244 research outputs found

    Enhancing Power Efficient Design Techniques in Deep Submicron Era

    Get PDF
    Excessive power dissipation has been one of the major bottlenecks for design and manufacture in the past couple of decades. Power efficient design has become more and more challenging when technology scales down to the deep submicron era that features the dominance of leakage, the manufacture variation, the on-chip temperature variation and higher reliability requirements, among others. Most of the computer aided design (CAD) tools and algorithms currently used in industry were developed in the pre deep submicron era and did not consider the new features explicitly and adequately. Recent research advances in deep submicron design, such as the mechanisms of leakage, the source and characterization of manufacture variation, the cause and models of on-chip temperature variation, provide us the opportunity to incorporate these important issues in power efficient design. We explore this opportunity in this dissertation by demonstrating that significant power reduction can be achieved with only minor modification to the existing CAD tools and algorithms. First, we consider peak current, which has become critical for circuit's reliability in deep submicron design. Traditional low power design techniques focus on the reduction of average power. We propose to reduce peak current while keeping the overhead on average power as small as possible. Second, dual Vt technique and gate sizing have been used simultaneously for leakage savings. However, this approach becomes less effective in deep submicron design. We propose to use the newly developed process-induced mechanical stress to enhance its performance. Finally, in deep submicron design, the impact of on-chip temperature variation on leakage and performance becomes more and more significant. We propose a temperature-aware dual Vt approach to alleviate hot spots and achieve further leakage reduction. We also consider this leakage-temperature dependency in the dynamic voltage scaling approach and discover that a commonly accepted result is incorrect for the current technology. We conduct extensive experiments with popular design benchmarks, using the latest industry CAD tools and design libraries. The results show that our proposed enhancements are promising in power saving and are practical to solve the low power design challenges in deep submicron era

    Digital IP Protection Using Threshold Voltage Control

    Full text link
    This paper proposes a method to completely hide the functionality of a digital standard cell. This is accomplished by a differential threshold logic gate (TLG). A TLG with nn inputs implements a subset of Boolean functions of nn variables that are linear threshold functions. The output of such a gate is one if and only if an integer weighted linear arithmetic sum of the inputs equals or exceeds a given integer threshold. We present a novel architecture of a TLG that not only allows a single TLG to implement a large number of complex logic functions, which would require multiple levels of logic when implemented using conventional logic primitives, but also allows the selection of that subset of functions by assignment of the transistor threshold voltages to the input transistors. To obfuscate the functionality of the TLG, weights of some inputs are set to zero by setting their device threshold to be a high VtV_t. The threshold voltage of the remaining transistors is set to low VtV_t to increase their transconductance. The function of a TLG is not determined by the cell itself but rather the signals that are connected to its inputs. This makes it possible to hide the support set of the function by essentially removing some variable from the support set of the function by selective assignment of high and low VtV_t to the input transistors. We describe how a standard cell library of TLGs can be mixed with conventional standard cells to realize complex logic circuits, whose function can never be discovered by reverse engineering. A 32-bit Wallace tree multiplier and a 28-bit 4-tap filter were synthesized on an ST 65nm process, placed and routed, then simulated including extracted parastics with and without obfuscation. Both obfuscated designs had much lower area (25%) and much lower dynamic power (30%) than their nonobfuscated CMOS counterparts, operating at the same frequency

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Clock Tree Power Optimization of Three Dimensional VLSI System with Network

    Get PDF
    Abstract:The proposed method is based on minimum-cost maximum-flow formulation to globally determine the tree topology, which maintains load balance and considers the wirelength between pulse generators and pulsed latches. Experimental results indicate that the proposed migration approach can improve the power consumption by 12% and 13% with 7% and 70% skew improvements on average compared with the most recent paper on the industrial circuits and ISPD-2010 benchmarks, respectively. Minimizing the size of a clock tree is known as an effective approach to reduce power dissipation in modern circuit designs. However, most existing power-aware clock-tree minimization algorithms optimize power on the basis of flip-flops alone, which may result in limited power savings. To achieve a power and timing tradeoff, this paper investigates the pulsed-latch utilization in a clock tree for further power savings. This is the first paper to propose a migration approach to efficiently construct a clock tree with both pulsed-latches and flip-flops

    Design of a process monitor and of peripheral circuits enabling the characterisation of CMOS 45nm Ultra Low Power and Litho Friendly optimised standard cells

    Get PDF
    L’evoluzione della tecnologia CMOS è caratterizzata dallo scaling delle dimensioni dei dispositivi e dalla riduzione del consumo di potenza. Dal momento che le difficoltà di realizzazione aumentano al diminuire delle dimensioni, nei nodi tecnologici più recenti la velocità del processo di scaling sta diminuendo. Uno dei maggiori problemi causati dalla riduzione delle dimensioni dei dispositivi è la variabilità del processo di fabbricazione. L’obiettivo di questo progetto è quello di ridurre gli effetti che la variabilità del processo di realizzazione nel nodo tecnologico CMOS 45 nm ha sulle prestazioni della logica digitale, grazie a metodi di design non convenzionali. In questo progetto è stato realizzato un testchip per studiare e quantificare i vantaggi, in termini di prestazioni, ottenuti tramite la progettazione di librerie standard-like ottimizzate secondo canoni di litho-friendliness (LF) e ultra low power (ULP). Le standard cells LF utilizzano layout estremamente regolari. Le standard cells ULP sono progettate per operare con tensioni di alimentazioni notevolmente ridotte. Il fine principale del testchip sta nell’ottenere una panoramica della variabilità locale e globale di parametri significativi nella progettazione digitale: ad esempio la frequenza di lavoro e il consumo di potenza. Inoltre, nel testchip sono stati realizzati alcuni circuiti originali per il monitoraggio della qualità del processo di fabbricazione. The evolution of the CMOS technology is characterized by the scaling of transistors size and by the reduction of their power dissipation. In the last technology nodes the speed of the scaling process is decreasing, since the complexity of the technology increases with its size reduction. One of the main issues caused by the shrinking of the transistor size is the variability of the fabrication process. The target of this project is to reduce the effects of the variability of the realisation process in a CMOS 45 nm technology node in digital circuits performances, using unconventional design methods. A testchip is realised in this project to investigate and to quantify the improvement of the circuit performances obtained through the design of dedicated litho-friendly (LF) and of the Ultra Low Power (ULP) standard-like libraries. The LF standard cells libraries are optimised for lithography using ultra regular layout styles. The ULP standard cells library is optimised to operate at extremely low supply voltage. The main aim of the testchip is to get insight into the local and the global variability of relevant parameters for digital design, such as operating frequency and power consumption. In this testchip some structures are also included, to develop some innovative circuits that should help to monitor the quality of the technology process

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    corecore