5,436 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Heuristic Algorithms to Minimize Total Weighted Tardiness on the Single Machine and Identical Parallel Machines with Sequence Dependent Setup and Future Ready Time

    Get PDF
    This study generates heuristic algorithms to minimize the total weighted tardiness on the single machine and identical parallel machines with sequence dependent setup and future ready time. Due to the complexity of the considered problem, we propose two new Apparent Tardiness Cost based (ATC-based) rules. The performances of these two rules are evaluated on the single machine and identical parallel machines. Besides of these two rules, we also propose a look-ahead identical parallel machines heuristic (LAIPM). When a machine becomes idle, it selects a job to process from available jobs and near future jobs. The proposed method, LAIPM, is evaluated with other look-ahead methods on the identical parallel machines

    A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem

    Get PDF
    This paper addresses the problem of batch scheduling in an unrelated parallel machine environment with sequence dependent setup times and an objective of minimizing the total weighted mean completion time. The jobs\u27 processing times and setup times are stochastic for better depiction of the real world. This is a NP-hard problem and in this paper, new heuristics are developed and compared to existing ones using simulation. The results and analysis obtained from the computational experiments proved the superiority of the proposed algorithm PMWP over the other algorithms presented

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Bicriterion scheduling with equal processing times on a batch processing machine

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore