
Old Dominion University
ODU Digital Commons
Engineering Management & Systems Engineering
Faculty Publications Engineering Management & Systems Engineering

2006

A Dynamic Heuristic for the Stochastic Unrelated
Parallel Machine Scheduling Problem
Jean-Paul Arnaout
Old Dominion University

Ghaith Rabadi
Old Dominion University

Ji Hyon Mun
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_fac_pubs

Part of the Industrial Engineering Commons, and the Systems Engineering Commons

This Article is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has been
accepted for inclusion in Engineering Management & Systems Engineering Faculty Publications by an authorized administrator of ODU Digital
Commons. For more information, please contact digitalcommons@odu.edu.

Repository Citation
Arnaout, Jean-Paul; Rabadi, Ghaith; and Mun, Ji Hyon, "A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine
Scheduling Problem" (2006). Engineering Management & Systems Engineering Faculty Publications. 33.
https://digitalcommons.odu.edu/emse_fac_pubs/33

Original Publication Citation
Arnaout, J.-P., Rabadi, G., & Mun, J. H. (2006). A dynamic heuristic for the stochastic unrelated parallel machine scheduling problem.
International Journal of Operations Research, 3(2), 136-143.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217292744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_fac_pubs?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_fac_pubs?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_fac_pubs?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_fac_pubs/33?utm_source=digitalcommons.odu.edu%2Femse_fac_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

International Journal of Operations Research Vol. 3, No. 2, 136−143 (2006)

A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine
Scheduling Problem

Jean-Paul Arnaout∗, Ghaith Rabadi, and Ji Hyon Mun

Engineering Management and Systems Engineering Department, Old Dominion University
241 Kaufman Hall, Norfolk, VA 23529, USA

Received December 2006; Revised June 2006; Accepted July 2006

AbstractThis paper addresses the problem of batch scheduling in an unrelated parallel machine environment with
sequence dependent setup times and an objective of minimizing the total weighted mean completion time. The jobs’
processing times and setup times are stochastic for better depiction of the real world. This is a NP-hard problem and in this
paper, new heuristics are developed and compared to existing ones using simulation. The results and analysis obtained from
the computational experiments proved the superiority of the proposed algorithm PMWP over the other algorithms
presented.
KeywordsSimulation, Setup time, Unrelated parallel machine, Stochastic times, Heuristics

∗ Corresponding author’s e-mail: jarna002@odu.edu
1813-713X copyright © 2006 ORSTW

1. INTRODUCTION

Scheduling is considered to be a crucial factor in most
manufacturing and production systems. Most of the
research that has been done in this field concentrated on
deterministic settings and assumed known processing and
setup times with certainty. Unfortunately, most
manufacturing scenarios are stochastic in nature, which
leads the deterministic schedule to become obsolete once it
hits the shop floor. Therefore, the proposed heuristics in
this paper are tested under stochastic processing and setup
times as an attempt to capture the existing randomness in a
realistic environment. The stochastic jobs are scheduled on
unrelated parallel machines, which are machines that have
different processing times for the same job. Furthermore,
the jobs are grouped in batches before being sent to the
machines as it may be cheaper and faster to process jobs in
batches than to process them individually (Potts and
Kovalyov, 2000). One of the main benefits gained by batch
scheduling is revealed in the case of setup times, where the
machines incur setup times associated with processing
different jobs; lots of time can be saved by scheduling
identical jobs in batches, as setup will only be performed
when switching batches instead of individual jobs.

There are two possible scenarios in batch scheduling
environments: the first is job availability, where a job
becomes available immediately after the processing of its
predecessor is completed. The second is batch availability,
in which a job will not be available until the complete
previous batch has been processed. This paper addresses
the concept of batch availability.

The scheduling objective is to minimize the total
weighted mean completion time, which is at least a

NP-hard problem as the simplified problem of two
identical machines with no setup times is NP-hard in the
ordinary sense (Bruno et al., 1981). Discrete event
simulation will be used to model and test four heuristics
for the problem addressed in this paper. Some preliminary
promising results for this problem have been reported by
Arnaout and Rabadi (2005).

The rest of this paper is organized as follows. In section
2 the related research is summarized. In section 3 the
problem statement and objective function are presented.
Section 4 contains description of the heuristics developed
and used. The simulation model verification is presented in
section 5; the computational results and output analysis are
respectively described in sections 6 and 7. Finally, we
conclude our results in section 8.

2. RELATED RESEARCH

The most common objectives studied in parallel
machine scheduling are minimization of completion time,
tardiness, and makespan. Previous research indicated that
even the identical parallel machine problem with
minimization of total tardiness was NP-hard (Karp, 1972).
Due to this complexity, it became a common and
acceptable practice to find suitable heuristics instead of
optimal solutions for these complex scheduling problems.

The literature defines unrelated parallel machines as
machines having different processing times for the same
job (Liaw et al., 2003). They are unrelated in the sense that
the processing speed depends on the job being executed
and not the machine; each job will have different
processing times for each of the available machines.
Ghirardi and Potts (2005) considered the problem of

International Journal of
Operations Research

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

137

scheduling jobs on unrelated parallel machines to minimize
the makespan. The heuristic they used was an application
of the recovering beam search. Weng et al. (2001)
addressed the problem of scheduling a set of independent
jobs on unrelated parallel machines with sequence
dependent setup times so as to minimize the weighted
mean completion time. They presented in their paper seven
heuristic algorithms and tested them. In their algorithms,
they either assigned a job to the machine with the least cost
contribution, or to the machine on which the job has the
shortest processing time. They also introduced an
algorithm where they first assigned the job with the
smallest ratio of processing time plus setup time to weight;
this strategy outperformed the rest significantly. The
authors claimed that their algorithms are extremely fast and
can find solutions for up to 120 jobs and 12 machines in a
fraction of a second. Low (2005) solved a multi-stage flow
shop scheduling problem with unrelated parallel machines
and an objective of minimizing total flow time in the
system. A simulated annealing (SA)-based heuristic was
proposed to solve the addressed problem in a reasonable
running time. Mosheiov and Sidney (2003) addressed the
case of job-dependent learning curves and applied it to the
problem of unrelated parallel machines with the objective
of minimizing total flow time. Rabadi et al. (2006)
addressed the same problem with sequence dependent
setup times to minimize the makespan, where they
introduced a new heuristic (Meta-RaPS) for the
deterministic problem and compared it to an existing
heuristic called the Partitioning Heuristic, which was
introduced by Al-Salem (2004). Meta-RaPS outperformed
the existing Partitioning Heuristic in almost all cases.

Considerable research has also been published on batch
scheduling. Schwindt and Trautmann (2000) proposed a
new solution approach using models and methods of
resource constrained project scheduling to minimize the
makespan, subject to sequence dependent setup times in
process industries. Cheng et al. (2001) addressed the single
machine batch scheduling problem with resource
dependent setup and processing times. They considered a
common setup time for all batches, and their objective was
to minimize either the maximum job lateness or the total
weighted resource consumption. Brucker et al. (1998)
solved for the parallel machine batch scheduling problem
with sequence independent setup times and an objective of
finding feasible schedules with respect to deadlines. For an
extensive review on the topic, please refer to Potts and
Kovalyov (2000). It is important to note that the addition
of sequence dependent setup times adds a lot of
complexity to the problem. Allahverdi et al. (1999, 2006)
reviewed the literature that involved setup times, and
reported that Dietrich (1989) developed a heuristic for the
unrelated parallel machine problem with major and minor
setups, Guinet (1990) developed heuristic algorithms for
the same problem but with sequence dependent setup
times, and Elmaghraby et al. (1993), after extending
Guinet’s (1990) results, introduced an improved iterative
heuristic to minimize makespan.

Stochastic machine scheduling problems have been

considered, among others, by Glazebrook (1979), Weiss
and Pinedo (1980), Bruno et al. (1981), Weber et al. (1986),
Weiss (1992), and Mohring et al. (1999). However, and up
to our knowledge, no previous research has addressed the
generation of schedules in unrelated parallel machines
scenarios with stochastic processing and sequence
dependent setup times, and this is where the contribution
of this paper lies.

3. PROBLEM STATEMENT

The scheduling problem considered in this paper can be
described as follows. There are M unrelated parallel
machines and B batches, where a batch refers to a lot
containing n identical jobs, and different batches have
different job types. In the case where there are not enough
identical jobs to form a full batch, a partial one will be
produced. As we are assuming the concept of batch
availability, all jobs in a specific batch should be processed
on the same machine to which the batch is assigned. Each
machine is assumed to be available at time 0 and can
process one job at a time.

The jobs are simultaneously available at the beginning of
the scheduling horizon (at time zero). Further more, each
job can be processed on any of the machines but needs to
be processed by one machine only, and each machine is
capable of processing only one job at a time. Job
preemption is not allowed and there is no processing
precedence on any of the machines. Each job has a weight
(wi) indicating its importance, where wi has values between
1 and 5 with 1 being the least urgent and 5 the most urgent.
The machine setup times are dependent on jobs’ sequence
where setup times depend on both the batch just
completed and the next batch to be processed, and there is
no setup between jobs belonging to the same batch. Setup
times are assumed to be machine independent such that
regardless to which machine batches k and i are assigned,
ski would be the setup time required if batch i is scheduled
after batch k.

The batch processing times are dependent on the
machine they are assigned to; job Ji has a processing time pij
when it is assigned to machine Mj. For example, the
processing time of J1 on machine M2 is equal to p12.
However, jobs in the same batch are assumed to have the
same processing times when processed on the same
machine. For a given schedule, job Ji completion time on
machine Mj is represented by Cij, and our objective is to
find a near optimal schedule that can minimize the total
weighted mean completion time. This is represented as
follows:

Minimize Z
() 1

1 ,i ij
i

w C
η

η =

= ∑ (1)

where η is the total number of jobs, and the completion
time of job Ji on machine Mj is given by: Cij = Ckj + pij + ski,
where Ckj refers to the completion time of the job Jk that
preceded job Ji on machine Mj.

It is important to note that Equation (1) is in function

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

138

of jobs instead of batches because each batch must be
separated before being processed on a machine, as the
latter can not process more than one job at a time.

4. HEURISTIC ALGORITHMS

The basic and easiest method to obtain a solution for
the parallel machine problem is by randomly scheduling the
jobs to the machines (Kim et al., 2003), which will result in
low quality solutions most of the time. Since this is a hard
problem, obtaining optimal solutions will be very time
consuming and could be computationally infeasible. From
here came the need to invest more time in developing
appropriate heuristics. In the following sections, different
heuristics are presented and compared in order to
determine the most appropriate one for our problem.
Recall that the jobs’ processing and setup times are
stochastic and drawn from different uniform distributions.
Whenever a job is called by any algorithm to be sorted with
the other jobs or sent to a machine, it will be assigned a
processing time and setup time following some uniform
distribution; this is discussed more in section 6.

4.1 Heuristic 1 (WSPT)

In the weighted shortest processing time first (WSPT) rule,
batches (containing identical jobs) will be sorted from the
smallest [pij/wi] to the largest, and then they will be
assigned to the different machines according to the
smallest [(pij + ski)/wi]. WSPT has been used by a great
number of researchers, especially when the objective is to
minimize the total completion time in parallel machine
environments. This rule was proven to obtain optimal
results in the single machine total weighted completion
time problem and very good results in the same problem
but on identical parallel machines (Pinedo, 1995). The
heuristic can be summarized as follows:

Step 1. {Sort the batches in the increasing order of their

processing time over weight}
(a) Obtain the minimum processing time ρi for

each batch: ρi 1 2min{ , , ..., }i i iMp p p= , where i
is the batches’ index, and M is the total number
of machines.

(b) Reorder the batches as follows: ρ1/w1 ≤ ρ2/w2
≤ … ≤ ρB/wB.

Step 2. After sorting the batches, send them one by one to
the machines. Assign each batch to the machine that
has the smallest [(pij + ski)/wi].

Step 3. Before a batch gets processed, separate its jobs so
they can be processed one by one on the assigned
machine.

Step 4. STOP once all the jobs are assigned.

As one can see, WSPT neglects the setup time when
sorting the batches, which could lead to low quality
solutions if the setup times mount to a considerable
portion of the processing times. The computational
complexity of WSPT is O(B2 + BM + Blog(M)), where we

recall that B and M are respectively the number of batches
and machines.

4.2 Heuristic 2 (MWP)

Heuristic 2 works similar to WSPT, except that in Step 1,
the batches are sorted according to the smallest [(pij + ski) ×
attuned weight component].

In the total tardiness minimization problems, the earliest
weighted due date (EWDD) rule has been used quite often.
The weighted due date is calculated by multiplying the due
date by an attuned weight component which we will refer
to as γ in this paper. Kim et al. (2003) noted that the weight
component γ is represented as follows:

γ = [1 −αα × (wi)] (2)

where α∈ (0, 0.2) is the weight control parameter; the
selection of this range is explained in section 4.4. Due to
its high-quality results, we decided to alter the EWDD rule
so it can be used in our problem. α value was determined
to be 0.1 for the total tardiness minimization problem
(Kim et al., 2003); empirical tests showed that this is also
the best value when used in this heuristic for the problem
at hand. The altered rule will be referred to as the
minimum weighted processing time (MWP), where the
MWPi index for batch i is calculated by multiplying the
minimum processing time ρi of each batch by the attuned
weight parameter:

Step 1. {sorting batches}

(a) Obtain the minimum processing time ρi for
each batch i.

(b) Calculate for each batch its MWP:

 MWPi = ρi × [1.0 − (0.1) × (wi)].

(c) Reorder the batches from the smallest MWP to

the largest.
Step 2. Step 2, 3 and 4 are exactly like in Heuristic 1.

MWP is more complex (O(B2 + BM + B + Blog(M)))

than WSPT due to the calculation of MWPi.

4.3 Heuristic 3 (Weng’s Algorithm)

Weng et al. (2001) studied the problem of unrelated
parallel machine scheduling with sequence dependent setup
times and a total weighted mean completion time objective.
They presented in their paper seven heuristics, and showed
through extensive computational experiments that their
heuristic algorithm 7 significantly outperformed the other
seven heuristics presented. Algorithm 7 does not sort the
jobs according to a predetermined order; instead, among
the unscheduled jobs, it next assigns the job with the
smallest ratio of processing time plus setup time to weight.
So every time a job needs assignment, the algorithm looks
at all the unscheduled jobs, determines which one has the

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

139

smallest [(pij + ski)/wi] on which machine, and it assigns this
job to the associated machine.

Weng’s Algorithm was modeled through simulation and
compared with the proposed heuristics in this paper. The
algorithm’s complexity (O(BM)) is less than both MWP and
WSPT, as it assigns the batches directly to the machines
without presorting them.

4.4 Heuristic 4 (PMWP)

The Pick Minimum Weighted Processing Time (PMWP)
algorithm is introduced in this paper and is similar to Weng’s
Algorithm in the sense that it will not sort the batches
according to a predetermined order. However, it will pick
from the unscheduled batches the one with the smallest
[(pij + ski) × γ] and assigns it to the machine where this
minimum exists:

Let S be a set containing the unscheduled batches.

Step 1. Find batch i and machine j where the Eq. (3) is at its
minimum:

[Ckj + (pij + ski)×(1 − (α × wi))], (3)

where i ∈ S (index of unscheduled batches), j is
the machine index, and k is the previous batch on
that specific machine Mj.
In Equation (3) above, Ckj refers to the completion
time of the last batch on machine j, and the control
parameter α value was determined from Figure 1
and design of experiments (section 4.4.1).

Step 2. After finding both i and j, assign batch i to machine
Mj, and remove batch i from list S.

Step 3. If S = Ø, STOP; else go to Step 1.

PMWP complexity (O(BM)) is equal to Weng’s, i.e. it is
less than both MWP and WSPT.

Control Parameter Alpha

26000

26300

26600

26900

27200

27500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Alpha

C
om

pl
et

io
n

Ti
m

e

Figure 1. Control Parameter α.

The chart in Figure 1 describes how the completion

times of batches fluctuate when α is changed while
applying PMWP to the problem at hand. Recall that the
values of α are between 0 and 0.2; α cannot be 0 because

Equation (2) will then be equal to (1 − (0 × wi)) = 1,
meaning that the weight will not be considered in the
decision. Also α cannot be 0.2 because wi could be
anywhere from 1 to 5; and therefore when wi = 5, Eq. (2)
will then be (1 − (0.2 × 5)) = 0, which will lead to incorrect
decisions, as the algorithm will assign the wrong jobs first
assuming that they have the smallest [(pij + ski) × γ]. We can
conclude from Figure 1 that the algorithm is giving the
best solution when α = 0.02, and this will be the value to
be used in the proposed heuristic PMWP. It is worth
reminding here that α was equal to 0.1 when used with the
MWP heuristic, and it was not used with neither the WSPT
heuristic nor Weng’s algorithm.

4.4.1 PMWP design of experiments

Although the best value of α was determined to be 0.02
after running several replications of the same problem
design (4 machines and 120 jobs), a single problem design
is not sufficient to decide on α values for different problem
configurations, i.e. we can not guarantee that the best α is
0.02 for all problem combinations. Therefore, Design of
Experiments (DoE) was used to determine the appropriate
levels (parameters) of α that will contribute to better
objective function values in the various problem
configurations. Numerous publications provide a good
review about DoE (e.g., Fisher, 1960; Taguchi, 1993).

Four main factors along with their interactions were
considered for analysis. The factors are described as
follows: 1. Machines, referring to the number of machines; 2.
Batches, referring to the total number of batches (which is
equal to the number of jobs divided by the batch size); 3.
Weight to Processing, indicating the percentage that the weight
accounts to the processing time; 4. α, the control
parameter.

A 2-level full factorial design was carried out, with a total
number of experiments equal to 2k (2 referring to the
number of levels and k the number of factors) = 24 = 16
experiments. The factors’ levels are shown in Table 1.

The parameter α levels were respectively 0.02 and 0.18
based on Figure 1, where 0.02 indicated the best α value,
and 0.18 is a poor α located on the other extreme of the
parameter range [0, 0.2]. The reason these two levels were
chosen is to capture the two extremes in α range. The
results shown in Table 3 proved the correctness of the
approach and the choice of a two-level factorial design
versus a three (or more) level design that would have
required a much more extensive number of experiments.

The experiments along with their results are shown in
Table 2, where Y (located in the last column) refers to the
total weighted mean completion time.

Table 1. DoE factors and parameters

Factors Level 1 (-1) Level 2 (+1)
Machines (M) 2 4
Batches (B) 40 120
Weight to Processing (W) 4% 20%
Parameter α 0.02 0.18

~""

V

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

140

Table 2. Experiments’ designs and their results
Run W B M α W×B W×M W×α B×M B×α M×α W×B×M×α Y

1 -1 -1 -1 -1 1 1 1 1 1 1 1 41444.35
2 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 9507.56
3 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 476962.6
4 1 1 -1 -1 1 -1 -1 -1 -1 1 1 113899.5
5 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 20487.32
6 1 -1 1 -1 -1 1 -1 -1 1 -1 1 4685.78
7 -1 1 1 -1 -1 -1 1 1 -1 -1 1 218125.8
8 1 1 1 -1 1 1 -1 1 -1 -1 -1 48722.11
9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 41401.73
10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 10251.83
11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 481516.9
12 1 1 -1 1 1 -1 1 -1 1 -1 -1 116288.5
13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 20534.43
14 1 -1 1 1 -1 1 1 -1 -1 1 -1 4754.92
15 -1 1 1 1 -1 -1 -1 1 1 1 -1 221890.4
16 1 1 1 1 1 1 1 1 1 1 1 50388

Table 3. Factors’ coefficients

Constant W B M α W×B W×M W×α B×M B×α M×α W×B×M×α
117553 -72741 98420 -43855 824 -60908 26180 -216 -37337 722 -131 52

4.4.2 Analysis and interpretation of the results

A 95% confidence interval analysis was conducted using
regression, and the factors coefficients are shown in Table
3.

The following can be observed from the regression
results:
• R-squared = 0.978; this is a very good value, indicating

the success of the regression in predicting the values of
the dependent variable Y (the total weighted mean
completion time) within the sample. Also the adjusted
R-squared was equal to 0.92.

• At a significance level of 0.05 and from the t-statistics
and p-values reported (less than 0.05), we can reject the
null hypothesis that all (or any) of the regression
coefficients are zero.

• All the factors coefficient signs are as expected,
signifying the model’s logic and soundness.

• The generated prediction model from the regression was
successful in estimating the completion time.

• The α coefficient is positive, indicating that when α
level is -1 (α = 0.02), the completion time will decrease.
On the other hand, when α level is +1 (α = 0.18), the
completion time will increase, i.e. the solution would
worsen.
The above observations indicated two essential

conclusions: the first is the soundness and validity of the
implemented Design of Experiments, and the second is
that α value of 0.02 is in fact a suitable parameter to be
used in all of the proposed problem combinations.

5. MODEL VERIFICATION

Verification is the process of ensuring that the

simulation model behaves in the way it was intended
according to the modeling assumptions made (Kelton et al.,
2004).

Different methods were applied in verifying the
behavior of our models:
1. We used first deterministic data instead of stochastic

data for both the processing and setup times; this
allowed us to predict the system’s behavior.

2. We let only a single entity enters the system, and then
followed this entity through all the decisions nodes to
ensure that the model’s logic is correct.

3. We monitored the model’s animation, which made it
easier to detect any errors in our logic.

4. Finally, we put several variable animations, which
enabled us to determine which batch number is first
scheduled, and which batch is separated.

6. COMPUTATIONAL TESTS

Simulation is one of the best approaches to deal with
stochastic problems and therefore, the heuristics discussed
above were implemented and compared using the
simulation software Arena 7.0 from Rockwell Software.
The popularity of simulation has been increasing over the
past decade mainly due to its ability to deal with very
complicated models of correspondingly complicated
systems (Kelton et al., 2004). Another advantage of
stochastic simulation is its ability to provide the user with
an assessment of the robustness of the model, due to the
fact that randomness is taken into account; after all, most
actual systems are unlikely to work under ideal
deterministic conditions, but rather in a stochastic
uncertain environment (Reuter and Hulsmann, 2000). The
jobs’ processing times and machines’ setup times are

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

141

stochastic; the processing times can take any value of four
different uniform distributions: U[55, 75], U[35, 65], U[45,
70], and U[70, 90], and the setup times can take any value
of the following distributions: U[6, 10], U[4, 9], U[3, 8],
and U[1, 7]. Recall that these values are not known until
the job is actually started on the machine; this is how the
algorithms’ robustness is being tested. The reason uniform
distributions were used is due to their high variances,
ensuring that the presented heuristics are being tested
under unfavorable conditions (Weng et al., 2001). The jobs’
input weights were discrete values that were randomly
generated between 1 and 5.

The previous four heuristics were tested under 2, 3, and
4 unrelated parallel machines, as well as different job and
batch size combinations. The number of replications for
each of the problem instances was equal to 50 replications.
The number of replications was obtained using the
approach presented by Kelton et al. (2004) in order to
obtain good confidence intervals, where the simulation was
initially run for 10 replications. The half width obtained
was fairly large, and therefore more runs were needed to
reach a tolerable half width. Eq. (4) was used to determine
the number of runs:

≅ ×
2

0
0 2

h
k k

h
 (4)

where k0 and h0 refer respectively to the initial replication
number (10) and its associated half width, h refers to the
desired (tolerable) half width, and k is the number of
needed replications (k = 50)

7. OUTPUT ANALYSIS

The results obtained from running 50 replications at
95% confidence level are shown in Table 4, where the
Batch Size column indicates the number of jobs included
in a batch. The relative performance was calculated as
follows:

Relative Performance =Zl/Zmin, for l = 1, 2, 3, and 4, (5)

where Zl refers to the weighted mean completion time
obtained when using heuristic l, and Zmin refers to the
minimum weighted mean completion time among all 4
heuristics.

Table 4. Results from computational experiments

Machines Jobs
Batch
Size

WSPT MWP
Weng's

Algorithm
PMWP

2 80 1 1.10181 1.0766 1.035245 1
 120 1 1.10236 1.08625 1.022129 1
 480 4 1.04673 1.04532 1.004147 1
 10 1.01399 1.0103 1.001289 1
 1200 10 1.04714 1.04231 1.005242 1
 15 1.04254 1.04156 1.005776 1
3 80 1 1.10912 1.10911 1.024873 1
 120 1 1.11884 1.12231 1.026609 1
 480 4 1.09338 1.09781 1.002877 1
 1200 10 1.0874 1.09518 1.00273 1
 15 1.09747 1.09655 1.003905 1
4 80 1 1.124 1.12198 1.016727 1
 120 1 1.13969 1.14115 1.028273 1
 480 4 1.10445 1.12529 1.002489 1
 2400 20 1.11831 1.13627 1.006042 1

0.98
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14

M=2
,J=

80
, B

=1

M=2
,J=

48
0,B

=4

M=2
,J=

12
00

,B
=1

0

M=3
,J=

80
,B

=1

M=3
,J=

48
0,B

=4

M=3
,J=

12
00

,B
=1

5

M=4
,J=

12
0,B

=1

M=4
,J=

24
00

,B
=2

0

WSPT
MWP
Weng's Algorithm
PMWP

Figure 2. Comparison of the 4 algorithms.

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

142

As the number of machines increases, the load on each
machine decreases. Therefore, for the problem instances
of 4 machines, the size of batches was increased to 20.
Table 4 clearly confirms that PMWP significantly
outperformed the other algorithms for all experiments.
Even when the number of jobs per batch is one, which
changes the problem from batch scheduling to job
scheduling (because every job is a batch now), PMWP still
reached the lowest weighted mean completion time. Weng’s
Algorithm was the second best and it outperformed the
other two algorithms. These results imply that assigning
jobs directly to machines without arranging them in a
predetermined order results in better results. This is a valid
reasoning because when we sort the jobs ahead of time, it
is very difficult to predict the setup times as we do not
know the jobs’ sequence on each machine. On the other
hand, when we are assigning jobs from the unscheduled
ones directly before they are processed, we already know
which jobs exist on the machines; hence we know the jobs’
sequence on each machine and their associated setup times.

It can be noted from Figure 2 that the larger the
problem size, the better PMWP performs when compared
to the other rules. Even though Weng’s Algorithm
approaches PMWP in some problem instances, it never
performed better. Moreover, as the problem size increases,
it can be noticed that Weng’s algorithm departs from PMWP.

As we are comparing different models or logics for the
same problem, output analysis becomes crucial to ensure
the soundness of the results obtained. Even though the
results stated in Table 4 clearly indicate the superiority of
PMWP, simulation output analysis was conducted to
compare between PMWP and Weng’s Algorithm as it was the
second best. Both algorithms were compared under 40
jobs (each batch has one job only) and 4 machines. The
reason for having a batch size of one is to be as fair as
possible to Weng’s Algorithm, which was developed for job
scheduling and not batch scheduling. We ran both models
for 100 replications each, and the outputs were studied
through Arena Output Analyzer, which calculates the mean
difference between the two algorithms to test the following
null hypothesis:

H0: MeanPMWP − MeanWeng’s Algorithm = 0.

The obtained difference was negative, confirming that

PMWP leads to smaller completion time than Weng’s
Algorithm. To see if the obtained difference is statistically
significant (because of the stochastic input, we need to
ensure that the difference is far from zero in order to draw
sound conclusions), the output analyzer gives 95%
confidence interval on the expected difference and H0 is
rejected, concluding that PMWP significantly performs
better than Weng’s Algorithm.

The data and results for all four heuristics are available at
SchedulingResearch (2005) for other researchers to
compare any newly developed solution methodologies for
this problem.

8. CONCLUSIONS

In this paper, we have introduced an effective heuristic
algorithm, PMWP, for minimizing the total weighted mean
completion time on unrelated parallel machines with
sequence dependent setup times. PMWP was compared to
three other algorithms, including Weng’s Algorithm 7 in
Weng et al. (2001). All four algorithms were modeled and
tested through simulation, and our conclusions were drawn
using a large number of replications and several statistical
tests. These tests revealed that the algorithms are extremely
fast as they found solutions for 120 batches and 4
machines in a small fraction of a second. Computational
experiments also showed that PMWP significantly
outperformed the other algorithms, especially as the
number of jobs increased. Moreover, we were able to draw
the conclusion that in problems dealing with unrelated
parallel machines with setup times and the objective of
minimizing the total weighted mean completion time, it is
better to schedule the jobs directly to the machines
according to some rule rather than sorting them in a
predetermined order.

It is worth noting here that the four heuristics presented
in this paper were also tested in a deterministic
environment, and the results obtained were similar to the
stochastic environment in the sense that PMWP
significantly outperformed the other algorithms, and Weng’s
algorithm was the second best.

REFERENCES

1. Akkiraju, R., Murthy, S., Keskinocak, P., and Wu, F.
(1998). Multi machine scheduling: an agent-based
approach. Proceedings of Innovative Applications of
Artificial Intelligence, 1013-1018.

2. Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T.
(1999). A review of scheduling research involving
setup considerations. Omega, 27: 219-39.

3. Allahverdi, A., Ng, C.T., Cheng, T.C.E., and Kovalyov,
M.Y. (2006). A survey of scheduling problems with
setup times or costs. European Journal of Operational
Research (to appear).

4. Al-Salem, A. (2004). Scheduling to minimize
makespan on unrelated Parallel machines with
sequence dependent setup times. Engineering Journal
of the University of Qatar, 17: 177-187.

5. Arnaout, J-P. and Rabadi, G. (2005). Minimizing the
total weighted completion time on unrelated parallel
machines with stochastic times. Proceedings of the 2005
Winter Simulation Conference, Orlando: 2141-2147.

6. Brucker, P., Kovalyov, M., Shafransky, Y., and Werner,
F. (1998). Batch scheduling with deadlines on parallel
machines. Annals of Operations Research, 83: 23-40.

7. Bruno, J.L., Downey, P.J., and Frederickson, G.N.
(1981). Sequencing tasks with exponential service
times to minimize the expected flow time or
makespan. Journal of the ACM, 28: 100-113.

8. Cheng, T.C.E., Janiak, A., and Kovalyov, M.Y. (2001).
Single machine batch scheduling with resource

Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
IJOR Vol. 3, No. 2, 136−143 (2006)

143

dependent setup and processing times. European Journal
of Operational Research, 135: 177-183.

9. Dietrich, B.L. (1989). A two-phase heuristic for scheduling
on parallel unrelated machines with setups, IBM TJ Watson
Research Center, York Town Heights, NY: RC 14330.

10. Elmaghraby, S.E., Guinet, A., and Schellenberger, K.W.
(1993). Sequencing on parallel processors: an alternate
approach, OR Technical Report No. 273, Raleigh, NC:
North Carolina State University.

11. Fisher, R.A. (1960). The Design of Experiments. Hafner
Publishing Company, New York.

12. Ghirardi, M. and Potts, C.N. (2005). Makespan
minimization for scheduling unrelated parallel
machines: a recovering beam search approach.
European Journal of Operational Research, 165: 457-467.

13. Glazebrook, K.D. (1979). Scheduling tasks with
exponential service times on parallel machines. Journal
of Applied Probability, 16: 685-689.

14. Guinet, A. (1990). Textile production systems: a
succession of non-identical parallel processor shops.
Journal of the Operational Research Society, 42: 655-671.

15. Karp, R.M. (1972). Reducibility among combinatorial
problems. Complexity of Computer Communications, Plenum
Press, New York.

16. Kelton, D., Sadowski, R., and Sturrock, D. (2004).
Simulation with Arena, 3rd ed, McGraw-Hill Companies,
New York.

17. Kim, D-W., Kim, K-H., Jang, W., and Chen, F. (2002).
Unrelated parallel machine scheduling with setup
times using simulated annealing. Robotics and Computer
Integrated Manufacturing, 18: 223-231.

18. Kim, D-W., Na, D., and Chen, F. (2003). Unrelated
parallel machine scheduling with setup times and a
total weighted tardiness objective. Robotics and Computer
Integrated Manufacturing, 19: 173-181.

19. Liaw, C., Lin, Y., Cheng, C., and Chen, M. (2003).
Scheduling unrelated parallel machines to minimize
total weighted Tardiness. Computers and Operations
Research, 30: 1777-1789.

20. Low, C. (2005). Simulated annealing heuristic for flow
shop scheduling problems with unrelated parallel
machines. Computers and operations research, 32:
2013-2025.

21. Mohring, R., Shulz, A., and Uetz, M. (1999).
Approximation in stochastic scheduling: the power of
LP-based priority policies. Journal of the ACM (JACM),
46: 924-942.

22. Mosheiov, G. and Sidney, J. (2003). Scheduling with
general job-dependent learning curves. European
Journal of Operational Research, 147: 665-670.

23. Pinedo, M. (1995). Scheduling: Theory, Algorithms, and
Systems, Prentice Hall international series in industrial
and systems engineering, New Jersey.

24. Potts, C. and Kovalyov, M.Y. (2000). Scheduling with
batching: A review. European Journal of Operational
Research, 120: 228-249.

25. Pourbabai, B. (1985). One stage scheduling of
preemptive jobs on parallel machines with setup times
and due dates. Proceedings of American Institutions of

Industrial Engineering, Annual Conference Convention, 258:
pp.525-528.

26. Rabadi, G., Moraga, R., and Al-Salem, A. (2006).
Heuristics for the Unrelated Parallel Machine
Scheduling Problem with Setup Times. To appear in:
Journal of Intelligent Manufacturing; 17.

27. Reuter, R. and Hulsmann, J. (2000). Achieving design
targets through stochastic simulation. Proceedings of the
Madymo Users’ Conference, Paris. Available: http://www.
easi.de/company/publications/mad_2000/mad_2000.
pdf.

28. Ross, P. (1996). Taguchi Techniques for Quality Engineering,
McGraw Hill: New York.

29. SchedulingResearch. (2005). Data and solutions for
scheduling problems. Available: http://www.
schedulingresearch.com/.

30. Schwindt, C. and Trautmann, N. (2000). Batch
scheduling in process industries: an application of
resource-constrained project scheduling. OR Spectrum,
22: 501-524.

31. Taguchi, G. (1993). Taguchi Methods: Design of
Experiments, American Supplier Institute, Inc.,
Michigan.

32. Weber, R.R., Varaiya, P., and Walrand, J. (1986).
Scheduling jobs with stochastically ordered processing
times on parallel machines to minimize expected
flowtime. Journal of Applied Probability, 23: 841-847.

33. Weiss, G. (1992). Turnpike optimality of Smith’s rule
in parallel machines stochastic scheduling. Mathematics
of Operations Research, 17: 255-270.

34. Weiss, G., and Pinedo, M. (1980). Scheduling tasks
with exponential service times on non-identical
processors to minimize various cost functions. Journal
of Applied Probability, 17: 187-202.

35. Weng, M., Lu, J., and Ren, H. (2001). Unrelated
parallel machine scheduling with setup consideration
and a total weighted completion time objective.
International Journal of Production Economics, 70: 215-226.

	Old Dominion University
	ODU Digital Commons
	2006

	A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem
	Jean-Paul Arnaout
	Ghaith Rabadi
	Ji Hyon Mun
	Repository Citation
	Original Publication Citation

	Paper-6-IJOR-Vol3_2-Arnaout_OK_.doc

