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AbstractThis paper addresses the problem of  batch scheduling in an unrelated parallel machine environment with 
sequence dependent setup times and an objective of  minimizing the total weighted mean completion time. The jobs’ 
processing times and setup times are stochastic for better depiction of  the real world. This is a NP-hard problem and in this 
paper, new heuristics are developed and compared to existing ones using simulation. The results and analysis obtained from 
the computational experiments proved the superiority of  the proposed algorithm PMWP over the other algorithms 
presented. 
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1. INTRODUCTION 

Scheduling is considered to be a crucial factor in most 
manufacturing and production systems. Most of  the 
research that has been done in this field concentrated on 
deterministic settings and assumed known processing and 
setup times with certainty. Unfortunately, most 
manufacturing scenarios are stochastic in nature, which 
leads the deterministic schedule to become obsolete once it 
hits the shop floor. Therefore, the proposed heuristics in 
this paper are tested under stochastic processing and setup 
times as an attempt to capture the existing randomness in a 
realistic environment. The stochastic jobs are scheduled on 
unrelated parallel machines, which are machines that have 
different processing times for the same job. Furthermore, 
the jobs are grouped in batches before being sent to the 
machines as it may be cheaper and faster to process jobs in 
batches than to process them individually (Potts and 
Kovalyov, 2000). One of  the main benefits gained by batch 
scheduling is revealed in the case of  setup times, where the 
machines incur setup times associated with processing 
different jobs; lots of  time can be saved by scheduling 
identical jobs in batches, as setup will only be performed 
when switching batches instead of  individual jobs. 

There are two possible scenarios in batch scheduling 
environments: the first is job availability, where a job 
becomes available immediately after the processing of  its 
predecessor is completed. The second is batch availability, 
in which a job will not be available until the complete 
previous batch has been processed. This paper addresses 
the concept of  batch availability. 

The scheduling objective is to minimize the total 
weighted mean completion time, which is at least a 

NP-hard problem as the simplified problem of  two 
identical machines with no setup times is NP-hard in the 
ordinary sense (Bruno et al., 1981). Discrete event 
simulation will be used to model and test four heuristics 
for the problem addressed in this paper. Some preliminary 
promising results for this problem have been reported by 
Arnaout and Rabadi (2005). 

The rest of  this paper is organized as follows. In section 
2 the related research is summarized. In section 3 the 
problem statement and objective function are presented. 
Section 4 contains description of  the heuristics developed 
and used. The simulation model verification is presented in 
section 5; the computational results and output analysis are 
respectively described in sections 6 and 7. Finally, we 
conclude our results in section 8. 

 
2. RELATED RESEARCH 

The most common objectives studied in parallel 
machine scheduling are minimization of  completion time, 
tardiness, and makespan. Previous research indicated that 
even the identical parallel machine problem with 
minimization of  total tardiness was NP-hard (Karp, 1972). 
Due to this complexity, it became a common and 
acceptable practice to find suitable heuristics instead of  
optimal solutions for these complex scheduling problems. 

The literature defines unrelated parallel machines as 
machines having different processing times for the same 
job (Liaw et al., 2003). They are unrelated in the sense that 
the processing speed depends on the job being executed 
and not the machine; each job will have different 
processing times for each of  the available machines. 
Ghirardi and Potts (2005) considered the problem of  
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scheduling jobs on unrelated parallel machines to minimize 
the makespan. The heuristic they used was an application 
of  the recovering beam search. Weng et al. (2001) 
addressed the problem of  scheduling a set of  independent 
jobs on unrelated parallel machines with sequence 
dependent setup times so as to minimize the weighted 
mean completion time. They presented in their paper seven 
heuristic algorithms and tested them. In their algorithms, 
they either assigned a job to the machine with the least cost 
contribution, or to the machine on which the job has the 
shortest processing time. They also introduced an 
algorithm where they first assigned the job with the 
smallest ratio of  processing time plus setup time to weight; 
this strategy outperformed the rest significantly. The 
authors claimed that their algorithms are extremely fast and 
can find solutions for up to 120 jobs and 12 machines in a 
fraction of  a second. Low (2005) solved a multi-stage flow 
shop scheduling problem with unrelated parallel machines 
and an objective of  minimizing total flow time in the 
system. A simulated annealing (SA)-based heuristic was 
proposed to solve the addressed problem in a reasonable 
running time. Mosheiov and Sidney (2003) addressed the 
case of  job-dependent learning curves and applied it to the 
problem of  unrelated parallel machines with the objective 
of  minimizing total flow time. Rabadi et al. (2006) 
addressed the same problem with sequence dependent 
setup times to minimize the makespan, where they 
introduced a new heuristic (Meta-RaPS) for the 
deterministic problem and compared it to an existing 
heuristic called the Partitioning Heuristic, which was 
introduced by Al-Salem (2004). Meta-RaPS outperformed 
the existing Partitioning Heuristic in almost all cases. 

Considerable research has also been published on batch 
scheduling. Schwindt and Trautmann (2000) proposed a 
new solution approach using models and methods of  
resource constrained project scheduling to minimize the 
makespan, subject to sequence dependent setup times in 
process industries. Cheng et al. (2001) addressed the single 
machine batch scheduling problem with resource 
dependent setup and processing times. They considered a 
common setup time for all batches, and their objective was 
to minimize either the maximum job lateness or the total 
weighted resource consumption. Brucker et al. (1998) 
solved for the parallel machine batch scheduling problem 
with sequence independent setup times and an objective of  
finding feasible schedules with respect to deadlines. For an 
extensive review on the topic, please refer to Potts and 
Kovalyov (2000). It is important to note that the addition 
of  sequence dependent setup times adds a lot of  
complexity to the problem. Allahverdi et al. (1999, 2006) 
reviewed the literature that involved setup times, and 
reported that Dietrich (1989) developed a heuristic for the 
unrelated parallel machine problem with major and minor 
setups, Guinet (1990) developed heuristic algorithms for 
the same problem but with sequence dependent setup 
times, and Elmaghraby et al. (1993), after extending 
Guinet’s (1990) results, introduced an improved iterative 
heuristic to minimize makespan. 

Stochastic machine scheduling problems have been 

considered, among others, by Glazebrook (1979), Weiss 
and Pinedo (1980), Bruno et al. (1981), Weber et al. (1986), 
Weiss (1992), and Mohring et al. (1999). However, and up 
to our knowledge, no previous research has addressed the 
generation of  schedules in unrelated parallel machines 
scenarios with stochastic processing and sequence 
dependent setup times, and this is where the contribution 
of  this paper lies. 

 
3. PROBLEM STATEMENT 

The scheduling problem considered in this paper can be 
described as follows. There are M unrelated parallel 
machines and B batches, where a batch refers to a lot 
containing n identical jobs, and different batches have 
different job types. In the case where there are not enough 
identical jobs to form a full batch, a partial one will be 
produced. As we are assuming the concept of  batch 
availability, all jobs in a specific batch should be processed 
on the same machine to which the batch is assigned. Each 
machine is assumed to be available at time 0 and can 
process one job at a time. 

The jobs are simultaneously available at the beginning of  
the scheduling horizon (at time zero). Further more, each 
job can be processed on any of  the machines but needs to 
be processed by one machine only, and each machine is 
capable of  processing only one job at a time. Job 
preemption is not allowed and there is no processing 
precedence on any of  the machines. Each job has a weight 
(wi) indicating its importance, where wi has values between 
1 and 5 with 1 being the least urgent and 5 the most urgent. 
The machine setup times are dependent on jobs’ sequence 
where setup times depend on both the batch just 
completed and the next batch to be processed, and there is 
no setup between jobs belonging to the same batch. Setup 
times are assumed to be machine independent such that 
regardless to which machine batches k and i are assigned, 
ski would be the setup time required if  batch i is scheduled 
after batch k. 

The batch processing times are dependent on the 
machine they are assigned to; job Ji has a processing time pij 
when it is assigned to machine Mj. For example, the 
processing time of  J1 on machine M2 is equal to p12. 
However, jobs in the same batch are assumed to have the 
same processing times when processed on the same 
machine. For a given schedule, job Ji completion time on 
machine Mj is represented by Cij, and our objective is to 
find a near optimal schedule that can minimize the total 
weighted mean completion time. This is represented as 
follows: 

 

Minimize Z
( ) 1

1 ,i ij
i

w C
η

η =

= ∑                       (1) 

 
where η is the total number of jobs, and the completion 
time of job Ji on machine Mj is given by: Cij = Ckj + pij + ski, 
where Ckj refers to the completion time of the job Jk that 
preceded job Ji on machine Mj. 

It is important to note that Equation (1) is in function 
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of  jobs instead of  batches because each batch must be 
separated before being processed on a machine, as the 
latter can not process more than one job at a time. 
 
4. HEURISTIC ALGORITHMS 

The basic and easiest method to obtain a solution for 
the parallel machine problem is by randomly scheduling the 
jobs to the machines (Kim et al., 2003), which will result in 
low quality solutions most of  the time. Since this is a hard 
problem, obtaining optimal solutions will be very time 
consuming and could be computationally infeasible. From 
here came the need to invest more time in developing 
appropriate heuristics. In the following sections, different 
heuristics are presented and compared in order to 
determine the most appropriate one for our problem. 
Recall that the jobs’ processing and setup times are 
stochastic and drawn from different uniform distributions. 
Whenever a job is called by any algorithm to be sorted with 
the other jobs or sent to a machine, it will be assigned a 
processing time and setup time following some uniform 
distribution; this is discussed more in section 6. 

 
4.1 Heuristic 1 (WSPT) 

In the weighted shortest processing time first (WSPT) rule, 
batches (containing identical jobs) will be sorted from the 
smallest [pij/wi] to the largest, and then they will be 
assigned to the different machines according to the 
smallest [(pij + ski)/wi]. WSPT has been used by a great 
number of  researchers, especially when the objective is to 
minimize the total completion time in parallel machine 
environments. This rule was proven to obtain optimal 
results in the single machine total weighted completion 
time problem and very good results in the same problem 
but on identical parallel machines (Pinedo, 1995). The 
heuristic can be summarized as follows:  

 
Step 1. {Sort the batches in the increasing order of their 

processing time over weight} 
(a) Obtain the minimum processing time ρi for 

each batch: ρi 1 2min{ , ,  ..., }i i iMp p p= , where i 
is the batches’ index, and M is the total number 
of machines. 

(b) Reorder the batches as follows: ρ1/w1 ≤ ρ2/w2 
≤ … ≤ ρB/wB.  

Step 2. After sorting the batches, send them one by one to 
the machines. Assign each batch to the machine that 
has the smallest [(pij + ski)/wi].  

Step 3. Before a batch gets processed, separate its jobs so 
they can be processed one by one on the assigned 
machine. 

Step 4. STOP once all the jobs are assigned. 
 

As one can see, WSPT neglects the setup time when 
sorting the batches, which could lead to low quality 
solutions if  the setup times mount to a considerable 
portion of  the processing times. The computational 
complexity of  WSPT is O(B2 + BM + Blog(M)), where we 

recall that B and M are respectively the number of  batches 
and machines. 

 
4.2 Heuristic 2 (MWP) 

Heuristic 2 works similar to WSPT, except that in Step 1, 
the batches are sorted according to the smallest [(pij + ski) × 
attuned weight component].  

In the total tardiness minimization problems, the earliest 
weighted due date (EWDD) rule has been used quite often. 
The weighted due date is calculated by multiplying the due 
date by an attuned weight component which we will refer 
to as γ in this paper. Kim et al. (2003) noted that the weight 
component γ is represented as follows:  

 
γ = [1 −αα × (wi)]                          (2) 

 
where α∈ (0, 0.2) is the weight control parameter; the 
selection of  this range is explained in section 4.4. Due to 
its high-quality results, we decided to alter the EWDD rule 
so it can be used in our problem. α value was determined 
to be 0.1 for the total tardiness minimization problem 
(Kim et al., 2003); empirical tests showed that this is also 
the best value when used in this heuristic for the problem 
at hand. The altered rule will be referred to as the 
minimum weighted processing time (MWP), where the 
MWPi index for batch i is calculated by multiplying the 
minimum processing time ρi of  each batch by the attuned 
weight parameter: 

 
Step 1. {sorting batches} 

(a) Obtain the minimum processing time ρi for 
each batch i. 

(b) Calculate for each batch its MWP:  
 

 MWPi = ρi × [1.0 − (0.1) × (wi)]. 
 
(c) Reorder the batches from the smallest MWP to 

the largest. 
Step 2. Step 2, 3 and 4 are exactly like in Heuristic 1. 

 
MWP is more complex (O(B2 + BM + B + Blog(M))) 

than WSPT due to the calculation of  MWPi. 
 

4.3 Heuristic 3 (Weng’s Algorithm) 

Weng et al. (2001) studied the problem of  unrelated 
parallel machine scheduling with sequence dependent setup 
times and a total weighted mean completion time objective. 
They presented in their paper seven heuristics, and showed 
through extensive computational experiments that their 
heuristic algorithm 7 significantly outperformed the other 
seven heuristics presented. Algorithm 7 does not sort the 
jobs according to a predetermined order; instead, among 
the unscheduled jobs, it next assigns the job with the 
smallest ratio of  processing time plus setup time to weight. 
So every time a job needs assignment, the algorithm looks 
at all the unscheduled jobs, determines which one has the 
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smallest [(pij + ski)/wi] on which machine, and it assigns this 
job to the associated machine. 

Weng’s Algorithm was modeled through simulation and 
compared with the proposed heuristics in this paper. The 
algorithm’s complexity (O(BM)) is less than both MWP and 
WSPT, as it assigns the batches directly to the machines 
without presorting them. 

 
4.4 Heuristic 4 (PMWP) 

The Pick Minimum Weighted Processing Time (PMWP) 
algorithm is introduced in this paper and is similar to Weng’s 
Algorithm in the sense that it will not sort the batches 
according to a predetermined order. However, it will pick 
from the unscheduled batches the one with the smallest 
[(pij + ski) × γ] and assigns it to the machine where this 
minimum exists: 

Let S be a set containing the unscheduled batches. 
 

Step 1. Find batch i and machine j where the Eq. (3) is at its 
minimum: 
 

[Ckj + (pij + ski)×(1 − (α × wi))],               (3) 
 
where i ∈  S (index of unscheduled batches), j is 
the machine index, and k is the previous batch on 
that specific machine Mj. 
In Equation (3) above, Ckj refers to the completion 
time of the last batch on machine j, and the control 
parameter α value was determined from Figure 1 
and design of experiments (section 4.4.1). 

Step 2. After finding both i and j, assign batch i to machine 
Mj, and remove batch i from list S. 

Step 3. If S = Ø, STOP; else go to Step 1. 
 

PMWP complexity (O(BM)) is equal to Weng’s, i.e. it is 
less than both MWP and WSPT.  
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Figure 1. Control Parameter α. 

 
The chart in Figure 1 describes how the completion 

times of batches fluctuate when α is changed while 
applying PMWP to the problem at hand. Recall that the 
values of α are between 0 and 0.2; α cannot be 0 because 

Equation (2) will then be equal to (1 − (0 ×  wi)) = 1, 
meaning that the weight will not be considered in the 
decision. Also α cannot be 0.2 because wi could be 
anywhere from 1 to 5; and therefore when wi = 5, Eq. (2) 
will then be (1 − (0.2 × 5)) = 0, which will lead to incorrect 
decisions, as the algorithm will assign the wrong jobs first 
assuming that they have the smallest [(pij + ski) × γ]. We can 
conclude from Figure 1 that the algorithm is giving the 
best solution when α = 0.02, and this will be the value to 
be used in the proposed heuristic PMWP. It is worth 
reminding here that α was equal to 0.1 when used with the 
MWP heuristic, and it was not used with neither the WSPT 
heuristic nor Weng’s algorithm. 
 
4.4.1 PMWP design of experiments 

Although the best value of α was determined to be 0.02 
after running several replications of the same problem 
design (4 machines and 120 jobs), a single problem design 
is not sufficient to decide on α values for different problem 
configurations, i.e. we can not guarantee that the best α is 
0.02 for all problem combinations. Therefore, Design of 
Experiments (DoE) was used to determine the appropriate 
levels (parameters) of α that will contribute to better 
objective function values in the various problem 
configurations. Numerous publications provide a good 
review about DoE (e.g., Fisher, 1960; Taguchi, 1993). 

Four main factors along with their interactions were 
considered for analysis. The factors are described as 
follows: 1. Machines, referring to the number of machines; 2. 
Batches, referring to the total number of batches (which is 
equal to the number of jobs divided by the batch size); 3. 
Weight to Processing, indicating the percentage that the weight 
accounts to the processing time; 4. α, the control 
parameter.  

A 2-level full factorial design was carried out, with a total 
number of experiments equal to 2k (2 referring to the 
number of levels and k the number of factors) = 24 = 16 
experiments. The factors’ levels are shown in Table 1.  

The parameter α levels were respectively 0.02 and 0.18 
based on Figure 1, where 0.02 indicated the best α value, 
and 0.18 is a poor α located on the other extreme of the 
parameter range [0, 0.2]. The reason these two levels were 
chosen is to capture the two extremes in α range. The 
results shown in Table 3 proved the correctness of the 
approach and the choice of a two-level factorial design 
versus a three (or more) level design that would have 
required a much more extensive number of experiments. 

The experiments along with their results are shown in 
Table 2, where Y (located in the last column) refers to the 
total weighted mean completion time. 

 
Table 1. DoE factors and parameters 

Factors Level 1 (-1) Level 2 (+1) 
Machines (M) 2 4 
Batches (B) 40 120 
Weight to Processing (W) 4% 20% 
Parameter α 0.02 0.18 

~"" 

V 
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Table 2. Experiments’ designs and their results 
Run W B M α W×B W×M W×α B×M B×α M×α W×B×M×α Y 

1 -1 -1 -1 -1 1 1 1 1 1 1 1 41444.35 
2 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 9507.56 
3 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 476962.6 
4 1 1 -1 -1 1 -1 -1 -1 -1 1 1 113899.5 
5 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 20487.32 
6 1 -1 1 -1 -1 1 -1 -1 1 -1 1 4685.78 
7 -1 1 1 -1 -1 -1 1 1 -1 -1 1 218125.8 
8 1 1 1 -1 1 1 -1 1 -1 -1 -1 48722.11 
9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 41401.73 
10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 10251.83 
11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 481516.9 
12 1 1 -1 1 1 -1 1 -1 1 -1 -1 116288.5 
13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 20534.43 
14 1 -1 1 1 -1 1 1 -1 -1 1 -1 4754.92 
15 -1 1 1 1 -1 -1 -1 1 1 1 -1 221890.4 
16 1 1 1 1 1 1 1 1 1 1 1 50388 

 
Table 3. Factors’ coefficients 

Constant W B M α W×B W×M W×α B×M B×α M×α W×B×M×α 
117553 -72741 98420 -43855 824 -60908 26180 -216 -37337 722 -131 52 

 
4.4.2 Analysis and interpretation of the results 

A 95% confidence interval analysis was conducted using 
regression, and the factors coefficients are shown in Table 
3. 

The following can be observed from the regression 
results: 
• R-squared = 0.978; this is a very good value, indicating 

the success of  the regression in predicting the values of  
the dependent variable Y (the total weighted mean 
completion time) within the sample. Also the adjusted 
R-squared was equal to 0.92. 

• At a significance level of  0.05 and from the t-statistics 
and p-values reported (less than 0.05), we can reject the 
null hypothesis that all (or any) of  the regression 
coefficients are zero. 

• All the factors coefficient signs are as expected, 
signifying the model’s logic and soundness.  

• The generated prediction model from the regression was 
successful in estimating the completion time. 

• The α  coefficient is positive, indicating that when α 
level is -1 (α = 0.02), the completion time will decrease. 
On the other hand, when α level is +1 (α = 0.18), the 
completion time will increase, i.e. the solution would 
worsen. 
The above observations indicated two essential 

conclusions: the first is the soundness and validity of  the 
implemented Design of  Experiments, and the second is 
that α value of  0.02 is in fact a suitable parameter to be 
used in all of  the proposed problem combinations.   

 
5. MODEL VERIFICATION 

Verification is the process of  ensuring that the 

simulation model behaves in the way it was intended 
according to the modeling assumptions made (Kelton et al., 
2004).  

Different methods were applied in verifying the 
behavior of  our models: 
1. We used first deterministic data instead of  stochastic 

data for both the processing and setup times; this 
allowed us to predict the system’s behavior. 

2. We let only a single entity enters the system, and then 
followed this entity through all the decisions nodes to 
ensure that the model’s logic is correct. 

3. We monitored the model’s animation, which made it 
easier to detect any errors in our logic. 

4. Finally, we put several variable animations, which 
enabled us to determine which batch number is first 
scheduled, and which batch is separated. 

 
6. COMPUTATIONAL TESTS 

Simulation is one of  the best approaches to deal with 
stochastic problems and therefore, the heuristics discussed 
above were implemented and compared using the 
simulation software Arena 7.0 from Rockwell Software. 
The popularity of  simulation has been increasing over the 
past decade mainly due to its ability to deal with very 
complicated models of  correspondingly complicated 
systems (Kelton et al., 2004). Another advantage of  
stochastic simulation is its ability to provide the user with 
an assessment of  the robustness of  the model, due to the 
fact that randomness is taken into account; after all, most 
actual systems are unlikely to work under ideal 
deterministic conditions, but rather in a stochastic 
uncertain environment (Reuter and Hulsmann, 2000). The 
jobs’ processing times and machines’ setup times are 



Arnaout, Rabadi, and Mun: A Dynamic Heuristic for the Stochastic Unrelated Parallel Machine Scheduling Problem 
IJOR Vol. 3, No. 2, 136−143 (2006) 
 

141 

stochastic; the processing times can take any value of  four 
different uniform distributions: U[55, 75], U[35, 65], U[45, 
70], and U[70, 90], and the setup times can take any value 
of  the following distributions: U[6, 10], U[4, 9], U[3, 8], 
and U[1, 7]. Recall that these values are not known until 
the job is actually started on the machine; this is how the 
algorithms’ robustness is being tested. The reason uniform 
distributions were used is due to their high variances, 
ensuring that the presented heuristics are being tested 
under unfavorable conditions (Weng et al., 2001). The jobs’ 
input weights were discrete values that were randomly 
generated between 1 and 5. 

The previous four heuristics were tested under 2, 3, and 
4 unrelated parallel machines, as well as different job and 
batch size combinations. The number of  replications for 
each of  the problem instances was equal to 50 replications. 
The number of  replications was obtained using the 
approach presented by Kelton et al. (2004) in order to 
obtain good confidence intervals, where the simulation was 
initially run for 10 replications. The half  width obtained 
was fairly large, and therefore more runs were needed to 
reach a tolerable half  width. Eq. (4) was used to determine 
the number of  runs: 

≅ ×
2

0
0 2

h
k k

h
                                  (4) 

where k0 and h0 refer respectively to the initial replication 
number (10) and its associated half  width, h refers to the 
desired (tolerable) half  width, and k is the number of  
needed replications (k = 50) 

 
7. OUTPUT ANALYSIS 

The results obtained from running 50 replications at 
95% confidence level are shown in Table 4, where the 
Batch Size column indicates the number of  jobs included 
in a batch. The relative performance was calculated as 
follows:  

 
Relative Performance =Zl/Zmin, for l = 1, 2, 3, and 4,   (5) 

 
where Zl refers to the weighted mean completion time 
obtained when using heuristic l, and Zmin refers to the 
minimum weighted mean completion time among all 4 
heuristics.

 
Table 4. Results from computational experiments 

Machines Jobs 
Batch 
Size 

WSPT MWP 
Weng's 

Algorithm 
PMWP 

2 80 1 1.10181 1.0766 1.035245 1 
 120 1 1.10236 1.08625 1.022129 1 
 480 4 1.04673 1.04532 1.004147 1 
  10 1.01399 1.0103 1.001289 1 
 1200 10 1.04714 1.04231 1.005242 1 
  15 1.04254 1.04156 1.005776 1 
3 80 1 1.10912 1.10911 1.024873 1 
 120 1 1.11884 1.12231 1.026609 1 
 480 4 1.09338 1.09781 1.002877 1 
 1200 10 1.0874 1.09518 1.00273 1 
  15 1.09747 1.09655 1.003905 1 
4 80 1 1.124 1.12198 1.016727 1 
 120 1 1.13969 1.14115 1.028273 1 
 480 4 1.10445 1.12529 1.002489 1 
 2400 20 1.11831 1.13627 1.006042 1 
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Figure 2. Comparison of  the 4 algorithms. 
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As the number of  machines increases, the load on each 
machine decreases. Therefore, for the problem instances 
of  4 machines, the size of  batches was increased to 20. 
Table 4 clearly confirms that PMWP significantly 
outperformed the other algorithms for all experiments. 
Even when the number of  jobs per batch is one, which 
changes the problem from batch scheduling to job 
scheduling (because every job is a batch now), PMWP still 
reached the lowest weighted mean completion time. Weng’s 
Algorithm was the second best and it outperformed the 
other two algorithms. These results imply that assigning 
jobs directly to machines without arranging them in a 
predetermined order results in better results. This is a valid 
reasoning because when we sort the jobs ahead of  time, it 
is very difficult to predict the setup times as we do not 
know the jobs’ sequence on each machine. On the other 
hand, when we are assigning jobs from the unscheduled 
ones directly before they are processed, we already know 
which jobs exist on the machines; hence we know the jobs’ 
sequence on each machine and their associated setup times. 

It can be noted from Figure 2 that the larger the 
problem size, the better PMWP performs when compared 
to the other rules. Even though Weng’s Algorithm 
approaches PMWP in some problem instances, it never 
performed better. Moreover, as the problem size increases, 
it can be noticed that Weng’s algorithm departs from PMWP.  

As we are comparing different models or logics for the 
same problem, output analysis becomes crucial to ensure 
the soundness of  the results obtained. Even though the 
results stated in Table 4 clearly indicate the superiority of  
PMWP, simulation output analysis was conducted to 
compare between PMWP and Weng’s Algorithm as it was the 
second best. Both algorithms were compared under 40 
jobs (each batch has one job only) and 4 machines. The 
reason for having a batch size of  one is to be as fair as 
possible to Weng’s Algorithm, which was developed for job 
scheduling and not batch scheduling. We ran both models 
for 100 replications each, and the outputs were studied 
through Arena Output Analyzer, which calculates the mean 
difference between the two algorithms to test the following 
null hypothesis: 

 
H0: MeanPMWP − MeanWeng’s Algorithm = 0. 

 
The obtained difference was negative, confirming that 

PMWP leads to smaller completion time than Weng’s 
Algorithm. To see if  the obtained difference is statistically 
significant (because of  the stochastic input, we need to 
ensure that the difference is far from zero in order to draw 
sound conclusions), the output analyzer gives 95% 
confidence interval on the expected difference and H0 is 
rejected, concluding that PMWP significantly performs 
better than Weng’s Algorithm.  

The data and results for all four heuristics are available at 
SchedulingResearch (2005) for other researchers to 
compare any newly developed solution methodologies for 
this problem. 
 

8. CONCLUSIONS 

In this paper, we have introduced an effective heuristic 
algorithm, PMWP, for minimizing the total weighted mean 
completion time on unrelated parallel machines with 
sequence dependent setup times. PMWP was compared to 
three other algorithms, including Weng’s Algorithm 7 in 
Weng et al. (2001). All four algorithms were modeled and 
tested through simulation, and our conclusions were drawn 
using a large number of  replications and several statistical 
tests. These tests revealed that the algorithms are extremely 
fast as they found solutions for 120 batches and 4 
machines in a small fraction of  a second. Computational 
experiments also showed that PMWP significantly 
outperformed the other algorithms, especially as the 
number of  jobs increased. Moreover, we were able to draw 
the conclusion that in problems dealing with unrelated 
parallel machines with setup times and the objective of  
minimizing the total weighted mean completion time, it is 
better to schedule the jobs directly to the machines 
according to some rule rather than sorting them in a 
predetermined order.  

It is worth noting here that the four heuristics presented 
in this paper were also tested in a deterministic 
environment, and the results obtained were similar to the 
stochastic environment in the sense that PMWP 
significantly outperformed the other algorithms, and Weng’s 
algorithm was the second best. 
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