78,674 research outputs found

    Optimizing construction of scheduled data flow graph for on-line testability

    Get PDF
    The objective of this work is to develop a new methodology for behavioural synthesis using a flow of synthesis, better suited to the scheduling of independent calculations and non-concurrent online testing. The traditional behavioural synthesis process can be defined as the compilation of an algorithmic specification into an architecture composed of a data path and a controller. This stream of synthesis generally involves scheduling, resource allocation, generation of the data path and controller synthesis. Experiments showed that optimization started at the high level synthesis improves the performance of the result, yet the current tools do not offer synthesis optimizations that from the RTL level. This justifies the development of an optimization methodology which takes effect from the behavioural specification and accompanying the synthesis process in its various stages. In this paper we propose the use of algebraic properties (commutativity, associativity and distributivity) to transform readable mathematical formulas of algorithmic specifications into mathematical formulas evaluated efficiently. This will effectively reduce the execution time of scheduling calculations and increase the possibilities of testability

    Transport or Store? Synthesizing Flow-based Microfluidic Biochips using Distributed Channel Storage

    Full text link
    Flow-based microfluidic biochips have attracted much atten- tion in the EDA community due to their miniaturized size and execution efficiency. Previous research, however, still follows the traditional computing model with a dedicated storage unit, which actually becomes a bottleneck of the performance of bio- chips. In this paper, we propose the first architectural synthe- sis framework considering distributed storage constructed tem- porarily from transportation channels to cache fluid samples. Since distributed storage can be accessed more efficiently than a dedicated storage unit and channels can switch between the roles of transportation and storage easily, biochips with this dis- tributed computing architecture can achieve a higher execution efficiency even with fewer resources. Experimental results con- firm that the execution efficiency of a bioassay can be improved by up to 28% while the number of valves in the biochip can be reduced effectively.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    Concept Learning with Energy-Based Models

    Get PDF
    Many hallmarks of human intelligence, such as generalizing from limited experience, abstract reasoning and planning, analogical reasoning, creative problem solving, and capacity for language require the ability to consolidate experience into concepts, which act as basic building blocks of understanding and reasoning. We present a framework that defines a concept by an energy function over events in the environment, as well as an attention mask over entities participating in the event. Given few demonstration events, our method uses inference-time optimization procedure to generate events involving similar concepts or identify entities involved in the concept. We evaluate our framework on learning visual, quantitative, relational, temporal concepts from demonstration events in an unsupervised manner. Our approach is able to successfully generate and identify concepts in a few-shot setting and resulting learned concepts can be reused across environments. Example videos of our results are available at sites.google.com/site/energyconceptmodel

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.
    • ā€¦
    corecore