13,633 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC ALGORITHMS

    Get PDF
    This research proposes a method to solve the adaptive, multi-objective job shop scheduling problem. Adaptive scheduling is necessary to deal with internal and external disruptions faced in real life manufacturing environments. Minimizing the mean tardiness for jobs to effectively meet customer due date requirements and minimizing mean flow time to reduce the lead time jobs spend in the system are optimized simultaneously. An asexual reproduction genetic algorithm with multiple mutation strategies is developed to solve the multi-objective optimization problem. The model is tested for single day and multi-day adaptive scheduling. Results are compared with those available in the literature for standard problems and using priority dispatching rules. The findings indicate that the genetic algorithm model can find good solutions within short computational time

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Analysis of a collaborative scheduling model applied in a job shop manufacturing environment

    Get PDF
    Collaborative Manufacturing Scheduling (CMS) is not yet a properly explored decision making practice, although its potential for being currently explored, in the digital era, by combining efforts among a set of entities, either persons or machines, to jointly cooperate for solving some more or less complex scheduling problem, namely occurring in job shop manufacturing environments. In this paper, an interoperable scheduling system integrating a proposed scheduling model, along with varying kinds of solving algorithms, are put forward and analyzed through an industrial case study. The case study was decomposed in three application scenarios, for enabling the evaluation of the proposed scheduling model when envisioning the prioritization of internal–makespan-or external–number of tardy jobs-performance measures, along with a third scenario assigning a same importance or weight to both kinds of performance measures. The results obtained enabled us to realize that the weighted application scenario permitted reaching more balanced, thus a potentially more attractive global solution for the scheduling problem considered through the combination of different kinds of scheduling algorithms for the resolution of each underlying sub problem according to the proposed scheduling model. Besides, the decomposition of a global more complex scheduling problem into simpler sub-problems turns them easier to be solved through the different solving algorithms available, while further enabling to obtain a wider range of alternative schedules to be explored and evaluated. Thus, contributing to enriching the scheduling problem-solving process. A future exploration of the application in other types of manufacturing environments, namely occurring in the context of extended, networked, distributed or virtual production systems, integrating an increased and variable set of collaborating entities or factories, is also suggested.The project is funded by the FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope: UIDB/00319/2020, and EXPL/EME-SIS/1224/2021

    Flow Shop Scheduling for Energy Efficient Manufacturing

    Get PDF
    A large number of new peaking power plants with their associated auxiliary equipment are installed to meet the growing peak demand every year. However, 10% utility capacity is used for only 1%~2% of the hours in a year. Thus, to meet the demand and supply balance through increasing the infrastructure investments only on the supply side is not economical. Alternatively, demand-side management might cut the cost of maintaining this balance via offering consumers incentives to manage their consumption in response to the price signals. Time-varying electricity rate is a demand-side management scheme. Under the time-varying electricity rate, the electricity price is high during the peak demand periods, while it is low during the off-peak times. Thus, consumers might get the cost benefits through shifting power usages from the high price periods to the low price periods, which leading to reduce the peak power of the grid. The current research works on the price-based demand-side management are primarily focusing on residential and commercial users through optimizing the “shiftable” appliance schedules. A few research works have been done focusing manufacturing facilities. However, residential, commercial and industrial sectors each occupies about one-third of the total electricity consumption. Thus, this thesis investigates the flow shop scheduling problems that reduce electricity costs under time-varying electricity rate. A time-indexed integer programming is proposed to identify the manufacturing schedules that minimize the electricity cost for a single factory with flow shops under time-of-use (TOU) rate. The result shows that a 6.9% of electricity cost reduction can be reached by shifting power usage from on-peak period to other periods. However, in the case when a group of factories served by one utility, each factory shifting power usage from on-peak period to off-peak hours independently, which might change the time of peak demand periods. Thus, a TOU pricing combined with inclining block rate (IBR) is proposed to avoid this issue. Two optimization problems are studied to demonstrate this approach. Each factory optimizes manufacturing schedule to minimize its electricity cost: (1) under TOU pricing, and (2) under TOU-IBR pricing. The results show that the electricity cost of each factory is minimized, but the total electricity cost at the 2nd hour is 6.25% beyond the threshold under TOU pricing. It also shows that factories collaborate with each other to minimize the electricity cost, and meanwhile, the power demand at each hour is not larger than the thresholds under TOU-IBR pricing. In contrast to TOU rate, the electricity price cannot be determined in ahead under real-time price (RTP), since it is dependent on the total energy consumption of the grid. Thus, the interactions between electricity market and the manufacturing schedules bring additional challenges. To address this issue, the time-indexed integer programming is developed to identify the manufacturing schedule that has the minimal electricity cost of a factory under the RTP. This approach is demonstrated using a manufacturing facility with flow shops operating during different time periods in a microgrid which also served residential and commercial buildings. The results show that electricity cost reduction can be achieved by 6.3%, 10.8%, and 24.8% for these three time periods, respectively. The total cost saving of manufacturing facility is 15.1% over this 24-hour period. The results also show that although residential and commercial users are under “business-as-usual” situation, their electricity costs can also be changed due to the power demand changing in the manufacturing facilities. Furthermore, multi-manufacturing factories served by one utility are investigated. The manufacturing schedules of a group of manufacturing facilities with flow shops subject to the RTP are optimized to minimize their electricity cost. This problem can be formulated as a centralized optimization problem. Alternatively, this optimization problem can be decomposed into several pieces. A heuristic approach is proposed to optimize the sub-optimization problems in parallel. The result shows that both the individual and total electricity cost of factories are minimized and meanwhile the computation time is reduced compared with the centralized algorithm

    Integral Approaches to Integrated Scheduling

    Get PDF

    Flowshop scheduling problems with due date related objectives: A review of the literature

    Get PDF
    3rd International Conference on Industrial Engineering and Industrial Management XIII Congreso de Ingeniería de Organización Barcelona-Terrassa, September 2nd-4th 200
    corecore