159 research outputs found

    Reliable Software for Unreliable Hardware - A Cross-Layer Approach

    Get PDF
    A novel cross-layer reliability analysis, modeling, and optimization approach is proposed in this thesis that leverages multiple layers in the system design abstraction (i.e. hardware, compiler, system software, and application program) to exploit the available reliability enhancing potential at each system layer and to exchange this information across multiple system layers

    An Examination of the Relationship between High School Mathematics Teachers\u27 Dispositions and Their Metaphors for Teaching

    Get PDF
    Teachers demonstrating dispositions that lead to effective teaching is a common discourse in mainstream education circles. Consequently, teacher education programs are held accountable for standards that include assessing professional teaching dispositions. In 2008, National Council of Accreditation of Teacher Education (NCATE) published standards in which professional dispositions were clearly defined. Likewise, scholarly work in metaphor research provided an understanding of how teachers conceptualize their most fundamental views and beliefs about aspects of teaching. This mixed methods study examined the relationship between the dispositions and the teaching metaphors of mathematics teachers. The sources for this study included multiple interviews, observations, and the researcher’s field notes and memos. After extensive data analyses, the findings revealed evidence that the link between the professional dispositions and the teaching metaphors of mathematics teachers may exist in teachers’ belief systems. Three themes emerged under the umbrella of belief systems: (1) personal experiences; (2) perceptions about personal factors (dispositions); and (3) perceptions about their students. One recommendation for teacher practice is to design professional learning in the area of teaching metaphors. Discovering their metaphors for teaching would provide for reflection on how their teaching metaphor informs many aspects of their teaching. Consequently, the findings impact teacher preparation as well. Exploring the teaching metaphors of preservice teachers would reveal basic beliefs that these students hold with regard to teaching and learning. These initial metaphors, along with exposure to reflective activities and field-based experiences could attribute to factors that would influence their beliefs about teaching

    Code, Nudge, or Notice?

    Get PDF
    Regulators are increasingly turning to means other than law to influence citizen behavior. This Essay compares three methods that have particularly captured the imagination of scholars and officials in recent years. Much has been written about each method in isolation. This Essay considers them together for the first time in order to generate a novel normative insight about the nature of regulatory choice. The first alternative method, known colloquially as architecture or “code,” occurs when regulators change a physical or digital environment to make undesirable conduct difficult. Speed bumps provide a classic example. The second method, libertarian paternalism or “nudging,” refers to leveraging human bias to guide us toward better policy outcomes. For instance, the state might attempt to increase organ donation by moving to an opt-out system because people disproportionally favor the status quo. Finally, mandated disclosure or “notice” requires organizations to provide individuals with information about their practices or products. Examples include everything from product warnings to privacy policies. These methods feel more distinct than they actually are. The timely example of graphic warnings on cigarettes illustrates how hard it can be to characterize a given intervention and why categories matter. The issue— which was headed for the Supreme Court—turned on whether the Food and Drug Administration (“FDA”) intended for the warnings to change smoker behavior or merely to provide information. The FDA abandoned the intervention when it became clear the “warnings” were really about driving down smoking. Indeed, whether regulators employ code, nudge, or notice, they almost always have a deeper choice between helping citizens and hindering them. This Essay argues that regulators should choose “facilitation” over “friction” where possible, especially in the absence of the usual safeguards that accompany law

    Efficient Power Management for Heterogeneous Multi-Core Architectures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    TACKLING PERFORMANCE AND SECURITY ISSUES FOR CLOUD STORAGE SYSTEMS

    Get PDF
    Building data-intensive applications and emerging computing paradigm (e.g., Machine Learning (ML), Artificial Intelligence (AI), Internet of Things (IoT) in cloud computing environments is becoming a norm, given the many advantages in scalability, reliability, security and performance. However, under rapid changes in applications, system middleware and underlying storage device, service providers are facing new challenges to deliver performance and security isolation in the context of shared resources among multiple tenants. The gap between the decades-old storage abstraction and modern storage device keeps widening, calling for software/hardware co-designs to approach more effective performance and security protocols. This dissertation rethinks the storage subsystem from device-level to system-level and proposes new designs at different levels to tackle performance and security issues for cloud storage systems. In the first part, we present an event-based SSD (Solid State Drive) simulator that models modern protocols, firmware and storage backend in detail. The proposed simulator can capture the nuances of SSD internal states under various I/O workloads, which help researchers understand the impact of various SSD designs and workload characteristics on end-to-end performance. In the second part, we study the security challenges of shared in-storage computing infrastructures. Many cloud providers offer isolation at multiple levels to secure data and instance, however, security measures in emerging in-storage computing infrastructures are not studied. We first investigate the attacks that could be conducted by offloaded in-storage programs in a multi-tenancy cloud environment. To defend against these attacks, we build a lightweight Trusted Execution Environment, IceClave to enable security isolation between in-storage programs and internal flash management functions. We show that while enforcing security isolation in the SSD controller with minimal hardware cost, IceClave still keeps the performance benefit of in-storage computing by delivering up to 2.4x better performance than the conventional host-based trusted computing approach. In the third part, we investigate the performance interference problem caused by other tenants' I/O flows. We demonstrate that I/O resource sharing can often lead to performance degradation and instability. The block device abstraction fails to expose SSD parallelism and pass application requirements. To this end, we propose a software/hardware co-design to enforce performance isolation by bridging the semantic gap. Our design can significantly improve QoS (Quality of Service) by reducing throughput penalties and tail latency spikes. Lastly, we explore more effective I/O control to address contention in the storage software stack. We illustrate that the state-of-the-art resource control mechanism, Linux cgroups is insufficient for controlling I/O resources. Inappropriate cgroup configurations may even hurt the performance of co-located workloads under memory intensive scenarios. We add kernel support for limiting page cache usage per cgroup and achieving I/O proportionality

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Investigating the viability of adaptive caches as a defense mechanism against cache side-channel attacks

    Get PDF
    The ongoing miniaturization of semiconductor manufacturing technologies has enabled the integration of tens to hundreds of processing cores on a single chip. Unlike frequency-scaling where performance is increased equally across the board, core-scaling and hardware thread-scaling harness the additional processing power through the concurrent execution of multiple processes or programs. This approach of mingling or interleaving process executions has engendered a new set of security challenges that risks to undermine nearly three decades’ worth of computer architecture design efforts. The complexity of the runtime interactions and aggressive resource sharing among processes, e.g., caches or interconnect network paths, have created a fertile ground to mount attacks of ever-increasing acuteness against these computer systems. One such class of attacks is cache side-channel attacks. While caches are vital to the performance of current processors, they have also been the target of numerous side-channel attacks. As a result, a few cache architectures have been proposed to defend against these attacks. However, these designs tend to provide security at the expense of performance, area and power. Therefore, the design of secure, high-performance cache architectures is still a pressing research challenge. In this thesis, we examine the viability of self-aware adaptive caches as a defense mechanism against cache side-channel attacks. We define an adaptive cache as a caching structure with (i) run-time reconfiguration capability, and (ii) intelligent built-in logic to monitor itself and determine its parameter settings. Since the success of most cache side-channel attacks depend on the attacker’s knowledge of the key cache parameters such as associativity, set count, replacement policy, among others, an adaptive cache can provide a moving target defense approach against many of these cache side-channel attacks. Therefore, we hypothesize that the runtime changes in certain cache parameters should render some of the side-channel attacks less effective due to their dependence on knowing the exact configuration of the caches.2020-06-03T00:00:00

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Monolithically Integrated SRAM-ReRAM Cache-Main Memory System

    Get PDF
    Emerging non-volatile memories are dense and potentially compatible with standard CMOS processes, enabling a monolithically integrated CPU-main memory chip. However, area constraints impact the feasibility of fitting the entirety of a multi-core CPU and main memory system into a single die. ReRAM presents a unique opportunity in that it can be fabricated in crosspoint subarrays which leave the bulk of transistors beneath them available for other logic. However, ReRAM also poses a performance challenge; the latency is generally much higher than that of DRAM. Compensating for this through the increased bandwidth afforded from being on-die poses an architectural problem. The access circuitry for ReRAM subarrays requires only a small percentage of the area beneath the array. Still, this dense circuitry and wiring disrupts the layouts of irregular logic like CPUs. Caches are very regular and composed of smaller subarrays, making them a better candidate to place beneath crosspoint subarrays. By co-designing the cache subarrays and ReRAM crosspoint subarrays, minimal disruption to the cache logic can be achieved while still covering the bulk of the last-level cache area in ReRAM. This work explores the design space when co-designing the last-level cache and ReRAM crosspoint subarrays. Using a modified version of Cacti, we are able to explore the design trade-offs when integrating ReRAM and cache and quantify the impact the ReRAM has on the last-level cache. This design space exploration gives us a first order approximation of the memory capacity of a monolithic computer and informs architectural simulations of such a machine. We also examine how the physical integration presents opportunities for logical integration of the last-level cache and main memory. The interconnects and controllers can be combined, and the addressing can be such that data movement between the main memory and cache is primarily vertical. These optimizations can result in area and energy savings with minor impacts on performance. The second section of this work explores one architectural style which can balance the monolithic memory system and a general-purpose compute system---a tiled multicore with wide SIMD and multi-threading. We develop a simulator for this architecture capable of simulating a wide variety of system parameters. Through a design space exploration of many of the parameters across sparse, irregular graph kernels and dense, streaming computations, we find monolithic ReRAM exceeds the performance of a state-of-the-art DRAM system for memory intensive workloads given enough parallelism. We further develop an analytic model to describe our system and highlight the important performance characteristics for a monolithic CPU-main memory chip. The analytic model is validated against our simulation data. Using this model, we examine the architectural balance of the systems we simulated. Finally, we develop an RTL model of the combined cache--main memory interface. This gives a more accurate model for the increase in resources required for the combined controller. We additionally develop a system-on-a-chip with an RTL model that alters requests to the FPGA's main memory to be at the speed of ReRAM requests. This model is used to show the performance of more computationally intensive benchmarks. It also is the first step toward creating a test chip for a monolithically integrated ReRAM main memory
    corecore