18 research outputs found

    Minimization via duality

    Get PDF
    We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object

    Automata Minimization: a Functorial Approach

    Full text link
    In this paper we regard languages and their acceptors - such as deterministic or weighted automata, transducers, or monoids - as functors from input categories that specify the type of the languages and of the machines to categories that specify the type of outputs. Our results are as follows: A) We provide sufficient conditions on the output category so that minimization of the corresponding automata is guaranteed. B) We show how to lift adjunctions between the categories for output values to adjunctions between categories of automata. C) We show how this framework can be instantiated to unify several phenomena in automata theory, starting with determinization, minimization and syntactic algebras. We provide explanations of Choffrut's minimization algorithm for subsequential transducers and of Brzozowski's minimization algorithm in this setting.Comment: journal version of the CALCO 2017 paper arXiv:1711.0306

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    Brzozowski's algorithm (co)algebraically

    Get PDF
    We give a new presentation of Brzozowski's algorithm to minimize nite automata, using elementary facts from universal algebra and coalgebra, and building on earlier work by Arbib and Manes on the duality between reachability and observability. This leads to a simple proof of its correctness and opens the door to further generalizations

    Final Coalgebras from Corecursive Algebras

    Get PDF

    Optimal Approximate Minimization of One-Letter Weighted Finite Automata

    Full text link
    In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory, and bounds on the quality of the approximation in the spectral norm and â„“2\ell^2 norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.Comment: 32 pages. arXiv admin note: substantial text overlap with arXiv:2102.0686
    corecore