640 research outputs found

    Quantum codes give counterexamples to the unique pre-image conjecture of the N-representability problem

    Full text link
    It is well known that the ground state energy of many-particle Hamiltonians involving only 2-body interactions can be obtained using constrained optimizations over density matrices which arise from reducing an N-particle state. While determining which 2-particle density matrices are "N- representable" is a computationally hard problem, all known extreme N-representable 2-particle reduced density matrices arise from a unique N-particle pre-image, satisfying a conjecture established in 1972. We present explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions which have degenerate ground states that cannot be distinguished by any 2-body operator. We relate the existence of such counterexamples to quantum error correction codes and topologically ordered spin systems.Comment: 4 pages, 1 figur

    Learn with SAT to Minimize B\"uchi Automata

    Full text link
    We describe a minimization procedure for nondeterministic B\"uchi automata (NBA). For an automaton A another automaton A_min with the minimal number of states is learned with the help of a SAT-solver. This is done by successively computing automata A' that approximate A in the sense that they accept a given finite set of positive examples and reject a given finite set of negative examples. In the course of the procedure these example sets are successively increased. Thus, our method can be seen as an instance of a generic learning algorithm based on a "minimally adequate teacher" in the sense of Angluin. We use a SAT solver to find an NBA for given sets of positive and negative examples. We use complementation via construction of deterministic parity automata to check candidates computed in this manner for equivalence with A. Failure of equivalence yields new positive or negative examples. Our method proved successful on complete samplings of small automata and of quite some examples of bigger automata. We successfully ran the minimization on over ten thousand automata with mostly up to ten states, including the complements of all possible automata with two states and alphabet size three and discuss results and runtimes; single examples had over 100 states.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    The choice of basic variables in current-density functional theory

    Full text link
    The selection of basic variables in current-density functional theory and formal properties of the resulting formulations are critically examined. Focus is placed on the extent to which the Hohenberg--Kohn theorem, constrained-search approach and Lieb's formulation (in terms of convex and concave conjugation) of standard density-functional theory can be generalized to provide foundations for current-density functional theory. For the well-known case with the gauge-dependent paramagnetic current density as a basic variable, we find that the resulting total energy functional is not concave. It is shown that a simple redefinition of the scalar potential restores concavity and enables the application of convex analysis and convex/concave conjugation. As a result, the solution sets arising in potential-optimization problems can be given a simple characterization. We also review attempts to establish theories with the physical current density as a basic variable. Despite the appealing physical motivation behind this choice of basic variables, we find that the mathematical foundations of the theories proposed to date are unsatisfactory. Moreover, the analogy to standard density-functional theory is substantially weaker as neither the constrained-search approach nor the convex analysis framework carry over to a theory making use of the physical current density

    Counterexample Generation in Probabilistic Model Checking

    Get PDF
    Providing evidence for the refutation of a property is an essential, if not the most important, feature of model checking. This paper considers algorithms for counterexample generation for probabilistic CTL formulae in discrete-time Markov chains. Finding the strongest evidence (i.e., the most probable path) violating a (bounded) until-formula is shown to be reducible to a single-source (hop-constrained) shortest path problem. Counterexamples of smallest size that deviate most from the required probability bound can be obtained by applying (small amendments to) k-shortest (hop-constrained) paths algorithms. These results can be extended to Markov chains with rewards, to LTL model checking, and are useful for Markov decision processes. Experimental results show that typically the size of a counterexample is excessive. To obtain much more compact representations, we present a simple algorithm to generate (minimal) regular expressions that can act as counterexamples. The feasibility of our approach is illustrated by means of two communication protocols: leader election in an anonymous ring network and the Crowds protocol

    Counterexample visualization and explanation for function block diagrams

    Get PDF

    A state/event-based model-checking approach for the analysis of abstract system properties.

    Get PDF
    AbstractWe present the UMC framework for the formal analysis of concurrent systems specified by collections of UML state machines. The formal model of a system is given by a doubly labelled transition system, and the logic used to specify its properties is the state-based and event-based logic UCTL. UMC is an on-the-fly analysis framework which allows the user to interactively explore a UML model, to visualize abstract behavioural slices of it and to perform local model checking of UCTL formulae. An automotive scenario from the service-oriented computing (SOC) domain is used as case study to illustrate our approach
    • …
    corecore