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Abstract—Model checking is a proven, effective method for
verifying instrumentation and control system application logics.
If a model of the system being verified does not satisfy a
specification, the failure scenario is presented to the user as
a counterexample trace. Analysis of the counterexample can
be time-consuming if the trace is long, the model is large, or
the specification is complex. Spurious counterexamples (“false
negatives”) often exacerbate the problem. In this paper, we
present a method that assists in identifying the root of the failure
in both the model and the specification, by animating the model
of the function block diagram as well as the LTL property. We
also introduce a practical tool for visualizing LTL properties
by animation and highlighting of important values based on
causality. Using 43 actual design issues identified in practical
nuclear industry projects, we then evaluate usefulness of the
property visualization and explanation features.

Index Terms—formal verification, model checking, visualiza-
tion of counterexamples, explanation of counterexamples

I. INTRODUCTION

Thorough verification of industrial instrumentation and
control (I&C) system application logics is often paramount,
especially if their failure can lead to accidents, hazards to vital
infrastructure, or significant financial loss. Model checking [1]
is a formal, computer-assisted verification method used to de-
termine whether a system model satisfies given specifications.
It has been proven [2] effective for the verification of I&C
logics expressed using function block diagrams.

One of the definitive advantages [3] of model checking
is that the analysis tool (model checker) returns a coun-
terexample trace, demonstrating—if possible—an execution
path of the system model that violates the specification. The
counterexample can then reveal design issues in the model
(and therefore in the original system). The problem is that the
counterexample is not necessarily given in a format that could
be called user-friendly, and seldom in a representation that is
specifically tailored for the application domain. Finding the
root cause of the failure can therefore be time-consuming if
the system model is large, the counterexample trace is long, or
the specification—typically a temporal logic property [1]—is
complex [4].

Of the methods and tools suggested for counterexample
visualization and explanation, some aim at finding the root
cause of the failure in the model (e.g. as a set of paths), some

at finding the failure in the trace (e.g. as a set of variable
assignments). In this paper, we address both aspects.

The contribution of the paper is fourfold. First, we intro-
duce a user-friendly method for visualizing counterexamples
for function block diagrams, based on animating both the
model and the specification. Second, we introduce a practical,
application domain independent tool for visualizing LTL [1]
properties for counterexamples represented in the NuSMV [5]
format. Third, we reveal data of 43 actual design issues
identified using model checking in practical customer projects
in the nuclear industry. Fourth, we evaluate an improved
version of the counterexample explanation algorithm published
by Beer et al. [4] using real-world data.

II. INTERPRETING COUNTEREXAMPLES

Due to the usually iterative work process of model checking,
analysts constantly have to interpret counterexamples, even if
the system design is error-free.

First, analysts often have to process erroneous (or “spuri-
ous” [6]) counterexamples—traces that are not valid for the
actual, correct system model [7]. Model abstractions are often
needed to address the state space explosion problem, but also
allow model execution paths that are not relevant for the
correct model [3], [6].

Second, spurious counterexamples also emerge if either the
model or the specification is simply incorrect (i.e., a “false
negative” [1]).1 Model construction can be (at least partially)
automated [8], but property specification is hard [9] and error-
prone.

Furthermore, the first “correct” counterexample produced
by the model checker is not necessarily the most interesting
scenario [7], but further analysis can reveal more relevant or
critical issues with the model. Re-verifying with a specification
that excludes the first trace, we may again increase the number
of counterexamples to interpret.

In all, the fact that the work process is usually iterative,
also means that it is self-repairing. The downside—having to
deal with several counterexamples—emphasizes the need for
support techniques and tools [10].

1It is, of course, theoretically possible to have logic errors in both the model
and the specification in a way that causes the incorrect specification to hold.



For process industry I&C systems, one domain-specific
challenge is that the traces are often quite long (see Sec-
tion V-A). The length is usually caused by the use of timing—
i.e., delays—in the logics. Timing, in turn, is needed to carry
out complex control sequences, account for process feedback,
wait for operator response, etc. [11]. Consequently, analysts
must also resort to rather complex formulas when specifying
properties related to timing and sequencing [11].

III. RELATED RESEARCH

A. Counterexample visualization

The simplest way for a model checker to return the coun-
terexample is to list the values of the model variables for
each step of the trace. Variable tables (e.g., [12], [13]) are
used by tools such as NuSMV or nuXmv [14]. State diagrams
(e.g., [12], [13], [15], [16]) are used in UPPAAL [17], which
also uses them as the modeling language. Sequence diagrams
(e.g. [12], [18]) are used in Spin [19] and UPPAAL.

In [12], the authors surveyed different visualizations, and
the most favored were sequence diagrams (of the type that the
survey participants were already familiar with) and “model
view”, meaning that the trace information was fed back to
the modeling tool. Examples of “model view” visualization
include [16], [18] and UPPAAL. More domain and application
specific visualizations are found in, e.g., [7], [10], [20]–[22].

Specifically for the analysis of function block diagrams, dig-
ital timing diagrams are used in [20]. In [22], counterexamples
for IEC 61499 control logics are played back using a simula-
tion model of the controlled process. In [7], propagation paths
that are calculated to be the cause for a counterexample are
visualized by animating a Simulink function block diagram,
but the analysis is restricted to Boolean variables.

Among the aforementioned visualization techniques, our
approach utilizes variable tables and model view. We also use a
novel technique: the values of all subformulas of the temporal
formula refuted by the trace are shown for each step of the
trace.

B. Automated analysis of counterexamples

The report [23] examined the question of counterexample
minimization: leaving only variable assignments which cause
the false value of the checked temporal property. The applied
solutions to this problem were: (1) using the cone of influence
reduction of NuSMV to reduce the number of variables in
the counterexample, (2) considering only input variables of
each module and non-deterministic variables as the ones en-
tirely determining model behavior; (3) heuristic minimization
by means of a random walk, (4) delta debugging, and (5)
restricting the number of variables which follow the original
counterexample by means of checking additional temporal
properties.

A question related to counterexample minimization is the
one of counterexample explanation by finding important vari-
able assignments. The work [4] aims to answer the question:
“what values on the trace cause it to falsify the specification?”,
which is done using the theory of causal models. The answer

to this question is a set of pairs 〈variable, trace step〉, from now
on referred to as atomic causes. The stated problem is shown
to be computationally complex, but a polynomial algorithm
is proposed which approximates the sought set of pairs. The
idea behind this algorithm is to represent the LTL formula in
such a form that its false value is caused exclusively by false
values of its subformulas (probably on different steps of the
trace). Thus, it is possible to descend from the false values
of the entire formula to the values of its atomic propositions
which cause the overall formula to be false (here, since this
is an approximating algorithm, the word “cause” should be
treated informally). The assignment of atomic proposition
values produced by the algorithm is sufficient to make the
overall formula false, but is not always minimum in this sense.
The upgraded version of this algorithm is used in the tool
presented in this paper (Section IV-B).

Understanding counterexamples is not limited to the anal-
ysis of a particular counterexample returned by a model
checker alone. Other related (although not utilized in this
paper) approaches involve generating multiple correct and
erroneous traces with subsequent analysis of common features
within these sets and differences between these sets [3],
obtaining shortest counterexamples [24], and finding causes
of counterexamples in the form of paths in the block diagram
model of the system [7].

IV. CONCEPT AND IMPLEMENTATION

A. Model animation

MODCHK [25], [26] is a graphical tool developed at
VTT for the model checking of I&C application logics
specified as function block diagrams. MODCHK allows the
user to construct a modular, graphical model of the function
block diagram, and specify properties in LTL, CTL [1] or
PSL [27]. MODCHK then generates the necessary input files
for NuSMV [5], runs NuSMV, and displays the counterexam-
ples by animating the block diagram in the modeling view
(see Fig. 1).

Motivated by VTT’s customer work [2], MODCHK sup-
ports features specific to the nuclear industry. First, modeling
is based on a manually constructed library of basic (ele-
mentary) function blocks. A lot of work has been done on
automatic model generation based on standard languages like
the IEC 61131-3 [8], but many major vendors use vendor-
specific, non-standard function blocks, instead [25]. Second,
the blocks have built-in support for signal validity processing.
In addition to the actual (binary or analogue) value, each
signal carries information about its validity in the form of an
additional binary “FAULT” variable, set to either FALSE (no
fault) or TRUE (fault). The way how signal validity affects
the internal processing of each elementary block is fully user-
configurable [26].

In MODCHK, counterexample traces are visualized by
animating the original model, i.e., the function block diagram
(see Fig. 1). The analyst can play the scenario back and forth,
and MODCHK displays each state as if it were a simulator
running the logic.



Fig. 1. MODCHK animates the model view, and a prototype tool animates
the property.

In the animation, colors, line styles and text monitors are
used to show the values of block diagram signals in each trace
position (see Fig. 2). For analogue—or, in NuSMV’s case,
integer—signals, the value is displayed with a number shown
at both ends of a signal line. For binary signals, TRUE is
shown with a thick, red line, while FALSE is shown as a
thin black line. Due to color vision issues, and to emphasize
contrast, only one distinctive color—red—is used rather than
a mix of different and possibly ambiguous colors. The use of
color and thick line for TRUE is inspired by the analogy of
logical TRUE (or “1”) with voltage and light. If applicable,
signal validity is shown with a dashed line for invalid data.

Fig. 2. Visualization of both the model and the property is based on different
signal line and text styles.

MODCHK can also display timing diagrams for the coun-

terexamples, but the advantages of feeding the trace back
to the original function block diagram view are fairly self-
evident, and proven by over three years of successful use
in practical customer projects [2]. “Model view” was also a
favored approach in the expert survey reported in [12].

B. Property animation

Due to the reasons mentioned in Section III, visualization
of each step of the counterexample trace in the model may
not be sufficient for fast understanding of the essence of
the counterexample. Thus, we implemented a cross-platform,
open software tool2 which visualizes LTL counterexamples
represented in the NuSMV format and highlights the values
of atomic propositions which are important for understand-
ing counterexamples. The tool is based on the polynomial
algorithm from [4], which produces an approximation of the
minimum set of atomic causes sufficient to make the LTL
formula false. We implemented it with several improvements:

1) Atomic propositions are highlighted in the places in the
formula where they are important: in addition to atomic
causes, the tool identifies pairs of the form 〈concrete
instance of the atomic proposition in the formula, trace
step〉, from now on called enhanced atomic causes.

2) Processing of liveness properties was improved by con-
sidering the counterexample in the lasso-shaped form [1]
(i.e. as a prefix and a loop) instead of unwinding the loop
of the counterexample several times.

3) Support of past-time LTL operators Y, Z, O, H [28] was
added.

4) An alternative way of applying the algorithm to aid
counterexample understanding was added, which inter-
actively provides the user with the causes (subformula
values) of TRUE or FALSE values of any subformula
on any step of the counterexample.

An exemplary screen of the tool is given in Fig. 3, where
three main panels are visible. On top, the list of all properties
loaded from the results of executing NuSMV is displayed.
Only properties whose values are FALSE are available for
examination (since these properties are the ones for which
NuSMV has provided a counterexample trace).

The middle panel displays the selected LTL formula for each
step of the counterexample. The coloring used here is based
on analogy with MODCHK model animation (see Fig. 2), but
the colors and styles should also be user-configurable. Two
types of annotations are visible:

1) Subformula values are shown using colors. TRUE val-
ues are shown in bold black font on red background,
and FALSE values are shown in gray font on white
background. For operators, coloring is only applied to
the symbol of the operator (e.g. “->”, “F”) and the
corresponding parentheses.

2) Whether a particular atomic proposition is an enhanced
atomic cause is shown below them with blue “∧”
characters.

2https://github.com/igor-buzhinsky/nusmv counterexample visualizer



Fig. 3. Counterexample visualization tool (compact annotation mode).

Fig. 4 shows the alternative (full) mode of the middle panel.
Its difference from the one explained above is the annotation
of truth values of LTL subformulas below the property. First,
this emphasizes the scope of each operator inside the formula.
Second, clicking on a value annotation below the formula
will highlight this annotation and the immediate cause of the
corresponding subformula value. For example, on Fig. 4 the
false value of the G operator on step 0 is explained by the false
value of its argument on step 1. Such annotations allow the
user to interactively see the causes of a particular subformula
value (starting from the FALSE value of the entire formula).
Applying this procedure iteratively, it is possible to descend to
enhanced atomic causes, and thus understand why these values
cause the FALSE value of the formula. In addition, enhanced
atomic causes are indicated with blue background.

Fig. 4. Full annotation mode of the counterexample visualization tool.

In the bottom panel (Fig. 3), a table of values of all variables
present in the counterexample (not limited to the values present
in the LTL formula) is provided. Atomic causes (variable val-
ues) which correspond to enhanced atomic causes highlighted
in the middle panel are marked with blue background.

V. EXPERIMENTAL RESULTS

A. Test data

Since 2008, VTT has applied model checking in practical
customer projects in the Finnish nuclear industry, and verified
I&C application logics related to the Olkiluoto 3 EPR new-
build, the I&C renewal of the Loviisa 1&2 VVER-440, and
the early, architecture level design of the planned Hanhikivi 1
AES-2006 nuclear power plants [2]. In these projects, VTT
has identified 43 design issues.3

A short, generalized description of each issue, along with
the failed property type is shown in Table I. In the properties,
a reoccurring (19%) pattern (Gp → (property)) is used to ex-
clude execution paths related to irrelevant model states (¬p), or
to look for alternate—perhaps more serious—counterexamples
by filtering out the first one (where ¬p occurs). For further
discussion on the property types, see [11].

From Table I, we can also see that the average length of the
trace is 13.8, with eight traces (19%) having 20 steps or more.
The length of the trace can depend on the model (how, e.g.,
time is modeled) or the type of the specification. The average
number of variables in the NuSMV model is 262, with the
highest numbers over 700. The LTL properties can refer to
as many as 12 different model variables (two being the most
common number, and less than five in 72% of the properties).

B. Experimental setup

23 of the 43 issues were detected before 2014, when the
MODCHK tool was put to use, based on manually constructed
NuSMV models. For the other 20 traces, the model could
directly be animated using MODCHK.

For all the related models, we collected the counterexample
traces as output by NuSMV. Since the property visualization
tool can only process LTL, PSL [27] properties were rewritten
as nested LTL expressions. The traces were then fed into
the property visualization tool. The output of the tool was
evaluated by a VTT expert already familiar with the majority
of the originally identified design issues, having been involved
in each of the customer projects from which the data were
collected.

C. Results

The features of important value highlighting (or “explana-
tion”) and LTL property animation were considered separately.
The evaluation grades are listed in Table I. The usefulness of
each feature in the context of each design issue was rated on
a scale of four grades:

3The issues are about a single system not fulfilling a stated property in some
scenario, regardless of how unlikely that scenario is. The safety relevance
of the issues is not considered here, and may be insignificant or purely
theoretical.



TABLE I
EVALUATION OF PROPERTY EXPLANATION AND VISUALIZATION FEATURES BASED ON INDUSTRY PROJECT COUNTEREXAMPLES

# Generalized description of issue Failed property type Trace Variables Evaluated usefulness
length fails at model prop. explanation animation

1 Spurious actuation due to short signal pulses G(p→ q) 18 18 399 3 good great
2 Spurious actuation due to delay element Gp→ G(q → Or) 16 2 773 9 excellent excellent
3 Spurious actuation due to memory element Gp→ G(q → Or) 25 11 779 10 excellent excellent
4 Reset signal takes no effect G(p→ q) 7 2 146 2 good good
5 Signal remains set due to maintenance action G(p→ q) 11 4 171 3 great great
6 Signal is set due to maintenance action Gp→ Gq 5 0 171 2 good good
7 Spurious actuation due to operator actions Gp→ G¬q 17 1 645 5 great great
8 Spurious commands on system startup G(p→ Oq) 19 6 346 2 good great
9 Overtly long actuation signal never {SERE}a 69 31 410 1 good good

10 Overtly long actuation signal never {SERE} 19 13 300 1 good good
11 Conflicting actuation commands never {SERE} 8 3 168 2 good good
12 Conflicting commands due to invalid data G(p→ q) 5 2 146 11 good good
13 Conflicting commands due to conflicting input G¬p 5 1 146 12 good good
14 A functional requirement is incorrect G(p→ q) 19b 1 338 4 good good
15 Spurious actuation G(p→ Oq) 5b 2 86 9 excellent great
16 Permanent inhibition of safety commands always {SERE}|->{SERE}! 8 5 62 3 great great
17 Signals blocked due to delay logic G(p ∧Xq → Xr) 9a 3 294 2 good good
18 Signals blocked due to delay logic Gp→ G(q → Fr) 44 −c 105 5 good good
19 Operator can perform forbidden action Gp→ G(q ∧Xr → Xs) 23 10 109 4 good good
20 Incorrect operational state is selected G(p ∧Xq → Xr) 7 6 290 8 good good
21 Conflicting internal variables are set Gp→ G¬q 23 7 289 4 good good
22 Redundant systems inhibited at the same time G¬p 6 2 777 4 good good
23 Low priority signal overrules high priority signal G(p→ q) 22 2 151 4 good good
24 Safety function inhibited due to maintenance Gp→ G(q → r) 6 1 13 4 great great
25 Actuator function inhibited due to maintenance G(p→ q) 4 1 185 5 good good
26 Low priority signal overrules high priority signal always {SERE}|->{SERE}! 16 3 94 5 good good
27 Safety function inhibited after system startup G(p→ (q ∨Or)) 5 1 148 3 good good
28 Redundant systems inhibited at the same time G¬p 10 4 135 2 good good
29 Both redundant computers inhibited G¬p 7 1 246 2 good good
30 Test mode initiation logic fails G(p ∧Xq → Xr) 10 5 135 3 good good
31 Test mode inhibition logic fails G(p ∧Xq → Xr) 8 3 246 4 good great
32 No operational mode is selected G(p ∧Xq → Xr) 11 2 300 4 good good
33 Conflicting operational modes are selected never {SERE} 8 2 273 2 good good
34 Alarm can be acknowledged before it occurs G(p ∧Xq → Xr) 7 3 275 3 great excellent
35 Actuation command inhibited on system startup G(p→ q) 16 2 344 4 good great
36 A functional requirement is incorrect G(p→ q) 9 0 399 3 good great
37 Short actuation command bursts occur G(p ∧Xq → Xr) 11 8 16 3 good great
38 Safety command inhibited on system startup G(p→ Oq) 4 0 416 3 great great
39 Rapidly fluctuating actuation commands sent G¬(p ∧Xq ∧XXr) 7 4 31 2 good good
40 Rapidly fluctuating actuation commands sent never {SERE} 33 16 142 8 good good
41 Safety command inhibited after a delay always {SERE}|->{SERE}! 22 12 91 2 good good
42 Invalid data inhibits another function G(p→ q) 4 1 512 5 good good
43 Signal validity processing logic fails G(p→ q) 4 1 154 2 good good
aSERE (Sequential Regular Expression) style of PSL is used to describe multi-cycle behavior. [27]
bAnalysis was based on bounded model checking, which restricts the length of the counterexample.
cA counterexample for a liveness property contains a scenario where the desired response never occurs.

1) “Fair” meant that the feature provided no specific added
value for interpretation.

2) “Good” meant that the feature accurately pointed out the
first failure of the property formula on the trace, as well
as which of the (potentially) several conditions failed.

3) “Great” meant that the result provides clues that lead to
the model variable(s) that served as the root of the issue.

4) “Excellent” meant that the result directly pointed to the
model variable(s) that served as the root of the issue.

Notably, in Table I, there are zero “fair” grades, meaning
that (1) both features were deemed useful for each of the
cases, and (2) the causality method suggested by Beer et al. [4]
perfectly accurately pointed to the first failure of each property.
Given the trace lengths indicated by the data, such indication

is obviously useful. The failure positions for each trace are
indicated in the “fails at” column of Table I.

The most useful results often coincide with the use of the
past operator O. These are examples of issues where the time
between the cause and the effect may be long due to delay
from, e.g., feedback from the controlled process [11].

D. Example

As a practical example, let us consider the design behind
issue 34 in Table I.4 Here, we present a masked and simplified

4Unfortunately, it is very hard to present the most promising results
due to confidentiality, since the failure in the logic cannot be presented
without describing, e.g., vendor-specific, proprietary function blocks. Also,
the usefulness of the results for the given example is also more prominent in
the original context.



version of the original logic, only containing the function
blocks needed to reproduce the issue. The original model
has an I/O number of 22 and consists of 65 function blocks,
resulting in 275 NuSMV model variables.

The simplified logic (see Fig. 5) is used to ensure that an
operator acknowledges an alarm. When criteria turns true,
alarm is set, and memorized in a flip-flop switch until the
operator uses ack button. The ack button signal, is turn,
is memorized in another flip-flop switch (so that alarm will
remain off after acknowledgment), until criteria turns false.

Fig. 5. Exemplar alarm logic.

A simple LTL property about criteria resulting in alarm
would read: G(criteria → alarm), which is obviously not
true, since ack button can reset alarm even if criteria is
true. Instead, the analyst specifies: G((¬alarm∧¬criteria)∧
X(criteria ∧ ¬ack button) → X alarm). In other words, if
both the the alarm and criteria are first false, and criteria
then becomes true, alarm shall be true unless ack button is
also true.

Verification with MODCHK produces a counterexample
trace, presented using a timing diagram in Fig. 6.

Fig. 6. Counterexample trace for the alarm logic, with important value
highlighting.

Fig. 1 shows a screen capture where MODCHK is display-
ing step 1 of the trace, and the property animation tool shows
steps 0 to 2. These views help the analyst see that:

1) On step 1, it is apparent from the MODCHK view
that ack button is true even if alarm is (or has not)
been true. The property tool highlights that alarm and
criteria are both false.

2) On step 2, the property tool highlights that criteria has
now turned true, while ack button has turned false, but
the alarm is still false.

The overall G property is true from step 2 on. The expressed
implication is not true at step 1, but due to the X operators,

the cause is really only apparent on the next step. Highlighting
values on steps 1 and 2 helps the analyst see that the failure
point is the transition between these two states, as ack button
and criteria simultaneously change their values.

Based on the visualizations, it is easier for the analyst to
notice that the somewhat unlikely scenario is about (1) the
operator acting spuriously and (2) the flip-flops ending up in
an unintended state due to two signal changes on the exact
same processing cycle. The lowering edge of the ack button
signal effectively masks the criteria signal, and the operator
can “preemptively” reset an alarm that is only about to occur.

VI. CONCLUSION AND FUTURE WORK

The data we have collected of actual nuclear industry
model checking projects proves several points. In terms of
counterexamples, we can see that (1) the traces are often very
long, (2) the models are often large, and (3) the properties are
sometimes complex. All these factors make pinpointing the
root cause of the failure in either the model or the specification
extra challenging. As the data shows, the failures can occur in
differing positions on the trace, even at the very end.

In this paper, we introduced a counterexample visualization
tool that supplements the animation of the system model with
the concurrent animation of the verified property. Furthermore,
the tool also employs a causality based approach for highlight-
ing signal values that are important for failure of the property.

We evaluated the property visualization tool against the
industry data. The primary observation is that for every one
of the 43 tested scenarios, the tool accurately indicated the
exact point of the first failure, and, for properties with several
conditions, accurately pointed out the condition that failed. We
could also identify some cases where either the animation of
the property or the highlighting of the important value (or
both) clearly helped the analyst see the root cause of the
failure. Identifying the root cause was especially helpful in
cases where the distance between the cause and the point
where the failure becomes apparent was long (in terms of trace
positions).

In many cases, the set of variable assignments produced by
the tool is the minimum one required to make the analyzed
LTL formula false. However, a notable limitation of the tool is
that it cannot highlight variables not included in the formula,
leading to the explanations given by the tool being not the most
useful ones in some situations. For some of the test cases, we
later modified the original property to include a key variable
we knew to be important, and then got even better results.
One idea of automatic identification of counterexample causes
which are not included in the formula is to explain the found
atomic causes using paths in the MODCHK model, applying
the ideas of [24].

For the further development of the visualization tools, we
can also identify the following needs:

• MODCHK should also highlight the important values
(i.e., the signals in the function block diagram) when
animating the model view.



• In our past work, we have found PSL a very useful for
expressing process industry specific properties [11], so
PSL property animation should also be supported.

There is no reason not to provide the analyst with a whole
range of different tools. In addition to the visualizations
demonstrated in this paper, timing diagrams are obviously
useful, and, in fact, are often used by VTT experts in design
issue reporting.
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