9,916 research outputs found

    Minimising the Sum of Projections of a Finite Set

    Get PDF

    The Discrete radon transform: A more efficient approach to image reconstruction

    Get PDF
    The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms are defined for continuous objects with continuous projections at all angles in [0,π). In practice, however, we pre-filter discrete projections take

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    Automorphisms of graph products of groups from a geometric perspective

    Get PDF
    This article studies automorphism groups of graph products of arbitrary groups. We completely characterise automorphisms that preserve the set of conjugacy classes of vertex groups as those automorphisms that can be decomposed as a product of certain elementary automorphisms (inner automorphisms, partial conjugations, automorphisms associated to symmetries of the underlying graph). This allows us to completely compute the automorphism group of certain graph products, for instance in the case where the underlying graph is finite, connected, leafless and of girth at least 55. If in addition the underlying graph does not contain separating stars, we can understand the geometry of the automorphism groups of such graph products of groups further: we show that such automorphism groups do not satisfy Kazhdan's property (T) and are acylindrically hyperbolic. Applications to automorphism groups of graph products of finite groups are also included. The approach in this article is geometric and relies on the action of graph products of groups on certain complexes with a particularly rich combinatorial geometry. The first such complex is a particular Cayley graph of the graph product that has a quasi-median geometry, a combinatorial geometry reminiscent of (but more general than) CAT(0) cube complexes. The second (strongly related) complex used is the Davis complex of the graph product, a CAT(0) cube complex that also has a structure of right-angled building.Comment: 36 pages. The article subsumes and vastly generalises our preprint arXiv:1803.07536. To appear in Proc. Lond. Math. So

    Noncommutative geometry, topology and the standard model vacuum

    Get PDF
    As a ramification of a motivational discussion for previous joint work, in which equations of motion for the finite spectral action of the Standard Model were derived, we provide a new analysis of the results of the calculations herein, switching from the perspective of Spectral triple to that of Fredholm module and thus from the analogy with Riemannian geometry to the pre-metrical structure of the Noncommutative geometry. Using a suggested Noncommutative version of Morse theory together with algebraic KK-theory to analyse the vacuum solutions, the first two summands of the algebra for the finite triple of the Standard Model arise up to Morita equivalence. We also demonstrate a new vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    Representation by Integrating Reproducing Kernels

    Full text link
    Based on direct integrals, a framework allowing to integrate a parametrised family of reproducing kernels with respect to some measure on the parameter space is developed. By pointwise integration, one obtains again a reproducing kernel whose corresponding Hilbert space is given as the image of the direct integral of the individual Hilbert spaces under the summation operator. This generalises the well-known results for finite sums of reproducing kernels; however, many more special cases are subsumed under this approach: so-called Mercer kernels obtained through series expansions; kernels generated by integral transforms; mixtures of positive definite functions; and in particular scale-mixtures of radial basis functions. This opens new vistas into known results, e.g. generalising the Kramer sampling theorem; it also offers interesting connections between measurements and integral transforms, e.g. allowing to apply the representer theorem in certain inverse problems, or bounding the pointwise error in the image domain when observing the pre-image under an integral transform

    Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups

    Full text link
    In the framework of large deformation diffeomorphic metric mapping (LDDMM), we develop a multi-scale theory for the diffeomorphism group based on previous works. The purpose of the paper is (1) to develop in details a variational approach for multi-scale analysis of diffeomorphisms, (2) to generalise to several scales the semidirect product representation and (3) to illustrate the resulting diffeomorphic decomposition on synthetic and real images. We also show that the approaches presented in other papers and the mixture of kernels are equivalent.Comment: 21 pages, revised version without section on evaluatio
    corecore