459 research outputs found

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    Delay and Cooperation in Nonstochastic Bandits

    Get PDF
    We study networks of communicating learning agents that cooperate to solve a common nonstochastic bandit problem. Agents use an underlying communication network to get messages about actions selected by other agents, and drop messages that took more than dd hops to arrive, where dd is a delay parameter. We introduce \textsc{Exp3-Coop}, a cooperative version of the {\sc Exp3} algorithm and prove that with KK actions and NN agents the average per-agent regret after TT rounds is at most of order (d+1+KNαd)(TlnK)\sqrt{\bigl(d+1 + \tfrac{K}{N}\alpha_{\le d}\bigr)(T\ln K)}, where αd\alpha_{\le d} is the independence number of the dd-th power of the connected communication graph GG. We then show that for any connected graph, for d=Kd=\sqrt{K} the regret bound is K1/4TK^{1/4}\sqrt{T}, strictly better than the minimax regret KT\sqrt{KT} for noncooperating agents. More informed choices of dd lead to bounds which are arbitrarily close to the full information minimax regret TlnK\sqrt{T\ln K} when GG is dense. When GG has sparse components, we show that a variant of \textsc{Exp3-Coop}, allowing agents to choose their parameters according to their centrality in GG, strictly improves the regret. Finally, as a by-product of our analysis, we provide the first characterization of the minimax regret for bandit learning with delay.Comment: 30 page
    corecore