132 research outputs found

    On minimality of convolutional ring encoders

    Get PDF
    Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Quasi-cyclic unit memory convolutional codes

    Get PDF

    Codes on Graphs and More

    Get PDF
    Modern communication systems strive to achieve reliable and efficient information transmission and storage with affordable complexity. Hence, efficient low-complexity channel codes providing low probabilities for erroneous receptions are needed. Interpreting codes as graphs and graphs as codes opens new perspectives for constructing such channel codes. Low-density parity-check (LDPC) codes are one of the most recent examples of codes defined on graphs, providing a better bit error probability than other block codes, given the same decoding complexity. After an introduction to coding theory, different graphical representations for channel codes are reviewed. Based on ideas from graph theory, new algorithms are introduced to iteratively search for LDPC block codes with large girth and to determine their minimum distance. In particular, new LDPC block codes of different rates and with girth up to 24 are presented. Woven convolutional codes are introduced as a generalization of graph-based codes and an asymptotic bound on their free distance, namely, the Costello lower bound, is proven. Moreover, promising examples of woven convolutional codes are given, including a rate 5/20 code with overall constraint length 67 and free distance 120. The remaining part of this dissertation focuses on basic properties of convolutional codes. First, a recurrent equation to determine a closed form expression of the exact decoding bit error probability for convolutional codes is presented. The obtained closed form expression is evaluated for various realizations of encoders, including rate 1/2 and 2/3 encoders, of as many as 16 states. Moreover, MacWilliams-type identities are revisited and a recursion for sequences of spectra of truncated as well as tailbitten convolutional codes and their duals is derived. Finally, the dissertation is concluded with exhaustive searches for convolutional codes of various rates with either optimum free distance or optimum distance profile, extending previously published results
    • …
    corecore