8 research outputs found

    New results on metric-locating-dominating sets of graphs

    Get PDF
    A dominating set SS of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of SS, and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize classes of trees according to certain relationships between their metric-location-domination number and their metric dimension and domination number. Then, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them involving parameters that have not been related so far.Comment: 13 pages, 3 figure

    On the strong partition dimension of graphs

    Full text link
    We present a different way to obtain generators of metric spaces having the property that the ``position'' of every element of the space is uniquely determined by the distances from the elements of the generators. Specifically we introduce a generator based on a partition of the metric space into sets of elements. The sets of the partition will work as the new elements which will uniquely determine the position of each single element of the space. A set WW of vertices of a connected graph GG strongly resolves two different vertices x,yWx,y\notin W if either dG(x,W)=dG(x,y)+dG(y,W)d_G(x,W)=d_G(x,y)+d_G(y,W) or dG(y,W)=dG(y,x)+dG(x,W)d_G(y,W)=d_G(y,x)+d_G(x,W), where dG(x,W)=min{d(x,w)  :  wW}d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}. An ordered vertex partition Π={U1,U2,...,Uk}\Pi=\left\{U_1,U_2,...,U_k\right\} of a graph GG is a strong resolving partition for GG if every two different vertices of GG belonging to the same set of the partition are strongly resolved by some set of Π\Pi. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties. We give some realizability results for this parameter and we also obtain tight bounds and closed formulae for the strong metric dimension of several graphs.Comment: 16 page

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft

    Symmetry in Graph Theory

    Get PDF
    This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of ""Graph Theory"". Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view
    corecore