2,504 research outputs found

    Applying Machine Learning to Advance Cyber Security: Network Based Intrusion Detection Systems

    Get PDF
    Many new devices, such as phones and tablets as well as traditional computer systems, rely on wireless connections to the Internet and are susceptible to attacks. Two important types of attacks are the use of malware and exploiting Internet protocol vulnerabilities in devices and network systems. These attacks form a threat on many levels and therefore any approach to dealing with these nefarious attacks will take several methods to counter. In this research, we utilize machine learning to detect and classify malware, visualize, detect and classify worms, as well as detect deauthentication attacks, a form of Denial of Service (DoS). This work also includes two prevention mechanisms for DoS attacks, namely a one- time password (OTP) and through the use of machine learning. Furthermore, we focus on an exploit of the widely used IEEE 802.11 protocol for wireless local area networks (WLANs). The work proposed here presents a threefold approach for intrusion detection to remedy the effects of malware and an Internet protocol exploit employing machine learning as a primary tool. We conclude with a comparison of dimensionality reduction methods to a deep learning classifier to demonstrate the effectiveness of these methods without compromising the accuracy of classification

    A Study of Feature Reduction Techniques and Classification for Network Anomaly Detection

    Get PDF
    Due to the launch of new applications the behavior of internet traffic is changing. Hackers are always looking for sophisticated tools to launch attacks and damage the services. Researchers have been working on intrusion detection techniques involving machine learning algorithms for supervised and unsupervised detection of these attacks. However, with newly found attacks these techniques need to be refined. Handling data with large number of attributes adds to the problem. Therefore, dimensionality based feature reduction of the data is required. In this work three reduction techniques, namely, Principal Component Analysis (PCA), Artificial Neural Network (ANN), and Nonlinear Principal Component Analysis (NLPCA) have been studied and analyzed. Secondly, performance of four classifiers, namely, Decision Tree (DT), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Naïve Bayes (NB) has been studied for the actual and reduced datasets. In addition, novel performance measurement metrics, Classification Difference Measure (CDM), Specificity Difference Measure (SPDM), Sensitivity Difference Measure (SNDM), and F1 Difference Measure (F1DM) have been defined and used to compare the outcomes on actual and reduced datasets. Comparisons have been done using new Coburg Intrusion Detection Data Set (CIDDS-2017) dataset as well widely referred NSL-KDD dataset. Successful results were achieved for Decision Tree with 99.0 percent and 99.8 percent accuracy on CIDDS and NSLKDD datasets respectively

    Rough Set-hypergraph-based Feature Selection Approach for Intrusion Detection Systems

    Get PDF
    Immense growth in network-based services had resulted in the upsurge of internet users, security threats and cyber-attacks. Intrusion detection systems (IDSs) have become an essential component of any network architecture, in order to secure an IT infrastructure from the malicious activities of the intruders. An efficient IDS should be able to detect, identify and track the malicious attempts made by the intruders. With many IDSs available in the literature, the most common challenge due to voluminous network traffic patterns is the curse of dimensionality. This scenario emphasizes the importance of feature selection algorithm, which can identify the relevant features and ignore the rest without any information loss. In this paper, a novel rough set κ-Helly property technique (RSKHT) feature selection algorithm had been proposed to identify the key features for network IDSs. Experiments carried using benchmark KDD cup 1999 dataset were found to be promising, when compared with the existing feature selection algorithms with respect to reduct size, classifier’s performance and time complexity. RSKHT was found to be computationally attractive and flexible for massive datasets

    Autoencoder-Based Representation Learning to Predict Anomalies in Computer Networks

    Get PDF
    With the recent advances in Internet-of-thing devices (IoT), cloud-based services, and diversity in the network data, there has been a growing need for sophisticated anomaly detection algorithms within the network intrusion detection system (NIDS) that can tackle advanced network threats. Advances in Deep and Machine learning (ML) has been garnering considerable interest among researchers since it has the capacity to provide a solution to advanced threats such as the zero-day attack. An Intrusion Detection System (IDS) is the first line of defense against network-based attacks compared to other traditional technologies, such as firewall systems. This report adds to the existing approaches by proposing a novel strategy to incorporate both supervised and unsupervised learning to Intrusion Detection Systems (IDS). Specifically, the study will utilize deep Autoencoder (DAE) as a dimensionality reduction tool and Support Vector Machine (SVM) as a classifier to perform anomaly-based classification. The study diverts from other similar studies by performing a thorough analysis of using deep autoencoders as a valid non-linear dimensionality tool by comparing it against Principal Component Analysis (PCA) and tuning hyperparameters that optimizes for \u27F-1 Micro\u27 score and \u27Balanced Accuracy\u27 since we are dealing with a dataset with imbalanced classes. The study employs robust analysis tools such as Precision-Recall Curves, Average-Precision score, Train-Test Times, t-SNE, Grid Search, and L1/L2 regularization. Our model will be trained and tested on a publicly available datasets KDDTrain+ and KDDTest+
    corecore