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ABSTRACT

APPLYING MACHINE LEARNING TO ADVANCE CYBER SECURITY:
NETWORK BASED INTRUSION DETECTION SYSTEMS

Hassan Hadi Latheeth AL-Maksousy
Old Dominion University, 2018
Director: Dr. Michele C. Weigle

Co-Director: Dr. Cong Wang

Many new devices, such as phones and tablets as well as traditional computer systems,

rely on wireless connections to the Internet and are susceptible to attacks. Two important

types of attacks are the use of malware and exploiting Internet protocol vulnerabilities in

devices and network systems. These attacks form a threat on many levels and therefore any

approach to dealing with these nefarious attacks will take several methods to counter. In

this research, we utilize machine learning to detect and classify malware, visualize, detect

and classify worms, as well as detect deauthentication attacks, a form of Denial of Service

(DoS). This work also includes two prevention mechanisms for DoS attacks, namely a one-

time password (OTP) and through the use of machine learning. Furthermore, we focus on an

exploit of the widely used IEEE 802.11 protocol for wireless local area networks (WLANs).

The work proposed here presents a threefold approach for intrusion detection to remedy

the effects of malware and an Internet protocol exploit employing machine learning as a

primary tool. We conclude with a comparison of dimensionality reduction methods to a deep

learning classifier to demonstrate the effectiveness of these methods without compromising

the accuracy of classification.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The Internet age has given rise to enormous social and economic benefits; however,

it also made us face many new challenges. In a fully connected world, Internet security

threats continue to evolve, always one step ahead of the most sophisticated defenses. Spam,

denial of service (DoS) attacks, phishing, and worms all depend on some form of malicious

software, commonly referred to as malware. Malware is a program developed with malicious

intent to harm a computer or network or to steal information. The volume of malware has

been growing so rapidly that researchers must quickly find new techniques to attempt to

understand and eliminate these threats [85, 99]. In 2015, more than 430 million new types

of malware were discovered by Symantec. This represents an increase of 36% compared to

2014 [12]. According to Trend Micro, the volume of malware has increased dramatically

from 1.01 million cases in 2013 to 7.1 million in just the first half of 2015 [10, 11]. In 2015,

over 6.5 million hosts were attacked, and four million unique malware objects were detected

according to Kaspersky Labs [56].

The underlying mechanisms in malware can be used to generate new variants. These

variants may not be detected by current antivirus programs unless their databases are up-

dated with the new variant. The increasing amount of malware and its shocking diversity

makes this problem very difficult to solve. Current anti-virus solutions are not able to detect

new malware that has not previously been detected or malware that mutates or changes

its binary code. The high availability of anti-detection techniques, as well as the ability to

buy malware on the black market, makes it relatively easy for an attacker, even with only

minimal skills, to use these tools to exploit vulnerable systems. Current studies show that

more and more attacks are being carried out by “script-kiddies” or are automated [29].

1.1.1 WORM BASED ATTACKS

Computer worms are a type of malware that contain highly infectious self-duplicating

code that can rapidly infect hundreds of thousands of systems and can be very difficult to
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detect [42, 74, 80, 106]. The Slammer worm spread to 90% of its target systems in just 10

minutes [83]. In 2017, the NotPetya and WannaCry worms created a global panic [65]. A

great deal of research based on different frameworks and numerous case studies are available

for the analysis of the spread of worms across networks [42,74,80,106]. Worms’ detrimental

influence on computer systems has been significant over the last several decades. There-

fore, it has become important to develop intrusion detection systems (IDS) and prevention

mechanisms to counter them.

1.1.2 MALWARE CLASSIFICATION

Malware classification approaches have been proposed as solutions to deal with the prob-

lem of detecting the increasing diversity of malware [27,78,116]. Signature-based detection is

the most commonly used approach for anti-malware systems classification [63]. In comput-

ing, each object has a unique signature. Therefore, when an object is detected as malicious,

its signature is added to a database of known malware. This database of signatures may con-

tain hundreds of millions of signatures that identify malicious objects. Unfortunately, new

versions of malicious code appear that are not recognized by signature-based approaches.

However, signature-based detection still provides good protection from the many millions of

older, but still active, threats. On the other hand, malware often utilizes small changes in

its code through evasive techniques such as polymorphism, and can only be distinguished by

a behavioral analysis. Behavior-based malware detection approaches monitor objects based

on their intended actions to determine whether they are malicious or not. Attempts to per-

form actions that are unauthorized would indicate that the object is malicious, or at least

suspicious.

Other research has investigated intelligent malware detection by applying data mining

or machine learning techniques [78, 111]. Machine learning is a popular tool in data science

that has already given excellent results in a wide range of domains such as security, image

processing, traffic control, biomedicine, atmospheric study, and many more [22, 72]. These

methods might achieve high detection rates at low false positive rates without the burden

of human signature generation required by manual methods. In general, machine learning

techniques analyze recorded attacks to learn the attack characteristics (features), so that

they can be detected in the future.

1.1.3 WIFI DOS ATTACKS

In addition to malware and worm threats, the prevalence of wireless Internet (WiFi)
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brings the vulnerability of targeted DoS attacks on those networks. DoS attacks are aimed

at disrupting a network’s legitimate traffic by sending large amounts of unwanted traffic

towards the network, thereby drastically reducing its performance and preventing servers

from delivering services to legitimate clients.

The IEEE 802.11 protocol provides two distinct logical wireless links: a data link and

a control and management (CM) link. In this protocol, WiFi Protected Access 2 (WPA2)

strengthens data protection and network access. It offers cryptographic protection of the

data link traffic, but leaves the control channel unprotected. Due to the lack of security in

the CM channel, DoS attacks can be triggered on the network which can compromise the

confidentiality, integrity, and availability of WiFi networks.

Under normal circumstances, a WiFi network has an access point (AP) that coordinates

traffic between WiFi clients. The AP is responsible for all communication to and from the

clients. Clients in range of an AP are in one of three states: client is not authenticated

or associated, client is authenticated but not associated, or client is both authenticated and

associated. Once authenticated and associated, the client can communicate with the AP.

When the client receives a de-authentication frame from the AP, the client must go back

to the first state, not authenticated and not associated. The client must re-authenticate and

re-associate after receiving the de-authentication frame in order to communicate with the

AP.

The WiFi de-authentication DoS attack targets the communication protocol of a WiFi

AP. Attackers generate a large number of de-authentication frames using a spoofing tech-

nique which can disconnect the communication between the client and AP. Since unlike

data frames, de-authentication and disassociation frames are not protected by cryptographic

techniques, an attacker can send de-authentication frames with a spoofed MAC address on

behalf of the AP to the clients (or vice versa) and terminate data communication between

clients and the AP. If clients receive spoofed de-authentication frames, it terminates commu-

nication with the AP, followed by scanning for available APs, and repeating the process of

authentication and association [54]. Since it requires very little effort, an attacker can easily

fabricate such spoofed frames at a high rate. Then the attacker can inject such spoofed

de-authentication/dis-association frames into a WiFi network to carry out a DoS attack.

Any device that uses IEEE 802.11a/g/n is affected by this attack.

One possible solution would be to use the IEEE 802.11w protocol, but this requires

replacing the devices in the network and would be very expensive and time consuming.

Typical solutions [8, 22, 31, 58, 88] for detecting attacks utilize modified node drivers. This
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also can be time consuming or impractical in many network systems.

1.1.4 IDS PERFORMANCE

IDS that use many features to detect an attack can incur significant overhead in train-

ing and testing due to the large dataset size based on real network data. Furthermore, the

amount of data largely affects resource consumption and detection stability. Although a

dataset can be large, only a few features may be important for detection. Therefore, the

elimination of redundant non-contributing data is essential to reducing the dataset size.

Moreover, effective feature selection and data reduction are important in order to decrease

the training duration and to improve the detection rate against known and unknown attacks.

Thus, a good feature selection approach minimizes the information redundancy and compu-

tation complexity, while improving accuracy and detection rates. The motivation becomes

a need to reduce the dimensionality without compromising accuracy of classification.

1.2 APPROACH

1.2.1 PREVENTING THE WIFI DE-AUTHENTICATION DOS ATTACK

We propose a machine learning based IDS to detect the WiFi de-authentication DoS

attacks. This approach consists of two parts, a packet sniffer and a data extractor, combined

with a machine learning (ML) classifier that are used to detect the attack. Our IDS does not

require a reconfiguration of the nodes in the network. We also propose two mutually exclusive

ways to prevent deauthentication DoS attacks in WiFi networks, but these approaches require

modification of network nodes.

The first approach is targeted at prevention and makes use of one-time passwords (OTPs),

which can be easily incorporated into the existing IEEE 802.11 standard. OTPs have two

useful properties which makes them more effective than conventional persistent passwords

[96]:

1. A password is valid for only one transaction or session.

2. An OTP is cryptographically random, which precludes it from being guessed. This

method will help stop both deauthentication and disassociation attacks.

The second mechanism is a machine learning based detection approach. Once an attack

is detected by this mechanism, special packets are sent out by the IDS to the protected
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client nodes and AP instructing them to drop all de-authentication packets for a period of

time. During this period of time, if another attack is detected, additional packets are sent,

indicating the the nodes should increase the duration they should continue dropping deau-

thentication packets. The main goal of this de-authentication IDS is to provide a detection

mechanism without needing to upgrade the nodes, and to apply a modern solution by using

machine learning to solve an existing problem.

1.2.2 DETECTING MALWARE AND WORM ATTACKS

We also focus on detecting worm attacks using their network behavior and leveraging

machine learning techniques. We implement a hybrid IDS that will detect worms with

modified binary signatures or with similar network behavior through a machine learning

approach. Then the suspicious network flows can be analyzed through a visualization tool

to provide better insights into worm behavior.

Another approach that we implement is a deep neural network (DNN) to detect and

classify malware based on network behavior. We show that the splitting of the system into

two neural networks, detection and analysis, is the key to increasing performance. Therefore,

this approach allows us to build a monitoring system with very low CPU usage. We compare

our approach with other work [32, 61], and we evaluate the performance of four machine

learning classifiers.

1.2.3 FEATURE SELECTION AND REDUCTION METHODS

Because the number of features used for network-based detection can be large, we devel-

oped a feature reduction method to reduce the computational cost and improve performance

without compromising accuracy. The goal is to preclude the requirement for high-end hard-

ware, thereby making it available to more end users. We accomplish this by selecting the

optimal features and reducing the feature set. We propose two feature selection tools to

address this problem and perform a comparison analysis of different feature reduction meth-

ods.

1.3 CONTRIBUTIONS

The overall objective of this work is to apply machine learning techniques to specific

types of network attacks: WiFi de-authentication DoS and malware attacks. In the process of

developing approaches to addressing these attacks, we have made the following contributions:
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1. A one-time password (OTP) approach to preventing the WiFi de-authentication DoS

attack. An OTP is valid for only one transaction or session and is cryptographically

random, which precludes it from being guessed.

2. A machine learning based approach to detecting the WiFi de-authentication DoS at-

tack. A trained machine learning classifier is used to detect the attack and alert clients

to ignore deauthentication packets for a specified time.

3. A hybrid intrusion detection system (IDS) [24] that uses machine learning and visu-

alization to detect and provide an in-depth analysis tool for worm attacks. Machine

learning is used to classify and detect both known and unknown worms with similar

network behavior. Once the suspicious activity is detected by the machine learning

tool, the visualization tool is used to further analyze network traffic. The visualization

tool displays the suspicious worm activity, traces the attack, and displays the affected

nodes.

4. A ns-3 based worm traffic generation tool for evaluating network-based IDS. The ns-3

tool is used to simulate worm traffic generation with different topologies and multiple

worm attacks. The propagation of the worm throughout the network cannot be seen

when part of the data is hidden, so using a test network and a simulator allows re-

searchers to simulate an attack and fully capture all aspects of the attack, providing a

complete picture of the network behavior.

5. A deep neural network (DNN) IDS [25] to detect and classify malware based on network

behavior. The DNN IDS is an efficient system used to detect and classify malware.

We propose using two neural networks, one for detection, and the other for analysis,

and this proves to be the key to increasing performance. This approach allows for the

construction of a monitoring system with very low CPU usage. Four learning classifiers

are presented, analyzed, and compared to determine which is best for accuracy and

performance.

6. Two feature selection methods to select the optimal features for the malware classifi-

cation and detection based on the network behavior. The accuracy estimating method

uses Shannon entropy for the estimation of the importance of features. The scoring

algorithm uses Shannon entropy, informational gain, and linear independence for scor-

ing the features with further cross-correlation-based filtering. The proposed methods

work with any kind of Machine Learning (ML) classifier and can be directly applied.



7

1.4 OUTLINE

The remainder of this work is organized as follows: Chapter 2 presents the background on

de-authentication and de-association attacks, the malware and worm dataset, dimensionality

reduction methods, and machine learning classifiers. Chapter 3 introduces related work.

Chapter 4 presents the IDS for detecting de-authentication attacks. Chapter 5 presents

the hybrid intrusion detection system for worm attacks. Chapter 6 presents the IDS for

malware. Chapter 7 presents benchmarking dimensionality reduction methods for malware

classification based on network behavior. Chapter 8 presents the feature selection tools.

Chapter 9 provides a summary of the work and presents ideas for future work.
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CHAPTER 2

BACKGROUND

To better understand the scope of this work, we will define the WiFi deauthentication

DoS attack and various worm attacks. We also describe several dimensionality reduction

and machine learning classification methods.

2.1 WIFI ASSOCIATION AND DEAUTHENTICATION

2.1.1 NORMAL WIFI ASSOCIATION AND DISASSOCIATION

Wireless Internet (Wi-Fi) (IEEE 802.11) networks consist of an access point (AP) and Wi-

Fi clients. The AP acts as a central mediator between the Wi-Fi clients. All communication

goes through the AP. When a client wants to communicate with another client, it must first

authenticate and then associate with the AP.

Clients are typically in one of three states: not authenticated or associated, authenticated

but not associated, or authenticated and associated. Once a client is authenticated and

associated it can communicate with the AP. When a deauthentication packet is received

from the AP, the client must go back to the first state, not authenticated and not associated,

and must reauthenticate and reassociate to communicate with the AP.

The association process is shown in Figure 1.. The AP and clients exchange 802.11

management frames to get to the authenticated and associated state. The client starts out

in the not authenticated or associated state.

• Client sends probe request to discover the 802.11 networks nearby.

• The AP receives the probe request and check to see if the client has at least one

common supported data rate. The a probe response is sent.

• A client sends a low-level 802.11 authentication frame to the AP.

• The AP receives the authentication frame and sends a response.

• Once a mobile station determines which AP it would like to associate to, it will send

an association request to the AP.
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• If the elements in the association request match the capabilities of the AP, the AP will

respond with an association response with a success message.

• The client is not associated to the AP and data transfer can begin.

Client

1. Probe Request

2. Probe Response

3. Authentication open seq: 1

4. Authentication open seq: 2

5. Association request

7. Data

6. Association response

AP

Fig. 1.: WiFi Association Process

The normal deauthentication process is shown in Figure 2.. The access point or clients can

send deauthentication packets to each other (bidirectional).
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Client

1. Probe Request

2. Probe Response

3. Authentication open seq: 1

4. Authentication open seq: 2

5. Association request

7. Data

6. Association response

AP

8. Deauthentication

Fig. 2.: Normal Deauthentication Process

2.1.2 DE-AUTHENTICATION DOS ATTACK

Unlike data frames, deauthentication and disassociation frames are not protected by the

cryptographic techniques (e.g., WPA/WPA2) thus are vulnerable to attack. Consequently,

an attacker can send deauthentication frames with spoofed media access control (MAC)

address on behalf of the AP to STA (or vice versa) and terminate data communication

between STA and AP, as shown in Figure 3.. If STA receives spoofed deauthentication

frames, it terminates communication with the AP, followed by scanning for available APs,

and repeating the process of authentication and association [54]. Since it requires very little

effort, an attacker can easily fabricate such spoofed frames at a high rate, and can inject

such spoofed deauthentication/disassociation frames into a Wi-Fi network to affect a DoS

attack.
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Client Attacker AP

Authentication Request

Authentication Response

Association  Request

Association Response

Data

Deauthentication Packet

X
Data

Blocked

Deauthentication

Fig. 3.: Deauthentication attack flow.

As shown in Figure 3., the attacker sends deauthentication frames with a spoofed MAC

address on behalf of the AP to STA (or vice versa) and terminates data communication

between STA and AP. If STA receives spoofed deauthentication frames, it terminates com-

munication with the AP, followed by scanning for available APs, and repeating the process

of authentication and association [54].

In addition to affecting a successful DoS attack, repeated authentication and re-association

with the AP also provides means to steal the WPA/WPA2 passphrases of affected Wi-Fi

nodes, thereby allowing it to:

1. Sniff the encrypted data frames, thereby compromising network confidentiality.

2. Inject malicious data frames to create man-in-the-middle (MITM) situation, thereby
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compromising data integrity. Such an integrity compromise can lead to serious safety

problems for systems that may be using WiFi networks to transporting sensor data or

control commands.

Several methods can be used by an attacker who wants to launch deauthentication DoS

attack. Common techniques to perform such attacks [21] are presented below:

• Spoofed AP to client deauthentication frame: By setting the source MAC address to

the AP MAC address and the destination MAC address to the client MAC address, an

attacker can create a frame that mimics a genuine frame directed from an AP to the

client. This one assumes that the frame has been sent by the legitimate AP and is dis-

connected from the network once it performs treatment of the spoofed deauthentication

frame.

• Spoofed client to AP deauthentication frame: The technique is the same as above. The

only difference is that the source MAC address is set to the client MAC address while

the destination MAC address is set to the AP MAC address.

• Broadcast spoofed deauthentication frame: In this case, the source MAC address is set

by the attacker to the AP MAC address. The destination MAC address is FF:FF:FF:FF:FF:FF.

All the clients are disconnected from the AP in this type of deauthentication DoS at-

tack.

2.2 COMPUTER WORM ATTACKS

Computer worms are small self-duplicating code that can rapidly infect hundreds of

thousands of systems. This causes a great increase in the amount of traffic and consumes

computational power. The Code Red I and II worms exploited a bug in computers running

Microsoft IIS web servers. The Code Red worm caused a severe service impact on several

network systems by altering IP addresses [39]. In 2003, the Slammer worm spread to 90% of

its target systems in just 10 minutes [83]. NotPetya and WannaCry created a global panic in

2017 [65]. A great deal of research based on different frameworks and numerous case studies

are available for the analysis of the spread of worms across networks [42,74,80,106]

Worms’ detrimental influence on systems has been great over the last several decades.

The targets are found using different methods and the worms propagate from one machine to

the next. Once the worm infects the first node of a network, that node will attempt to infect

the rest of the network. Therefore, it has become important to develop intrusion detection
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systems and prevention mechanisms to counter them. Our main approach in providing a

secure network is to detect and visualize worms by understanding the characteristics of the

behavior of the worm.

The datasets analyzed in this work include the Sasser, Slammer, Petya, WannaCry, and

EternalRocks works. We describe each of these.

2.2.1 SASSER WORM

The Sasser worm targets computers running Microsoft operating systems such as Win-

dows XP and Windows 2000. It can spread rapidly over vulnerable computers via TCP

port number 445 or 139 to infect other computers without human participation. This worm

belongs to self-replicating worms from the W32.Sasser family [79]. The variants Sasser-A,

Sasser-B, and Sasser-C were discovered within a short period of time and affected hundreds

of thousands of computers worldwide. When attacking, the worm first determines the ver-

sion of the remote operating system then uses the appropriate parameters to attack the host.

For Windows XP and Windows 2000, the worm takes advantage of the universal exploit,

lsasrv.dll and for Windows 2000 Advanced Server it uses the SP4 exploit. Operating sys-

tems such as Windows Me and NT are not impacted by this worm. The worm exploits a

vulnerable LSASS.EXE [2] to infect the system, causing the attacker to gain full control of

the system [20].

Figure 4. shows the state diagram of the Sasser worm attack. The attack begins with

the worm performing port scanning on port 445. Upon finding an open port, the worm will

attempt to exploit the unpatched LSASS.EXE file. In the third stage, the worm requests

access to the shared directory X.X.X.X/ipc$, where X.X.X.X is the target’s IP address. Then

the worm attempts a buffer overflow by sending a file with a data length of 10 million along

with its shell script. In the final stage, the worm starts an FTP service to the attacker’s host

port 8884 and downloads a backdoor malware, ssms.exe.
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Fig. 4.: State diagram of Sasser worm attack.

2.2.2 SLAMMER WORM

The Slammer worm exploits a buffer overrun in Microsoft SQL Service 2000 [1] running

on the Windows XP operating system. The worm’s payload is small enough to fit in a single

packet. It spreads very rapidly reaching SQL servers that are unpatched. It propagates by

rapidly transmitting the same message to other SQL servers using random IP addresses. This

attack can only be mitigated by taking the server offline. There is no additional malicious

content included in the worm payload. However, because of the behavior and the speed with
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which it attacks systems, it executes an effective DoS attack as the network’s resources are

drained [52]. Figure 5. shows the state diagram of the Slammer worm.
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Fig. 5.: State diagram of Slammer worm attack.

2.2.3 ETERNALBLUE

The EternalBlue exploit [3] was leaked as part of the EternalRocks Shadow Brokers

dataset [28]. The EternalBlue exploit targets all Windows versions since Windows 2000. The

Server Message Block (SMB) protocol is an application layer network protocol, operating on

TCP ports 139 and 445, and is used to provide shared file, printer, and serial port access

as well as access to remote Windows services. EternalBlue exploits a flaw in the SMBv1

service’s NT Transaction request handler by sending a large NT Transaction Request, making

it necessary for the target to accept one or more Trans2 Secondary requests. By sending



16

malformed Trans2 Secondary requests, EternalBlue exploits a flaw in the protocol that allows

shellcode to be delivered and executed on the target machine [65].

This exploit attack phases are shown in Figure 6.. The stages of attack start with a port

scan looking for port 445 or 139 using the SMB protocol. Once the open port is discovered,

the EternalBlue exploit is used to scan for the DoublePulsar backdoor. This exploit will infect

systems that are unpatched. Next, the worm is delivered and starts to propagate. The Tor

client, or a similar method, is launched to anonymize communications, and the worm begins

encryption activity. This basic process is used by the EternalRocks, WannaCry, and Petya

worms.
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Fig. 6.: State diagram of EternalBlue exploit.

2.2.3.1 EternalRocks

In 2017, EternalRocks was an Internet worm that used EternalBlue [3] as well as six other

NSA exploits leaked in the ShadowBrokers dataset. EternalRocks did not have a malicious

payload and seems to have been intended only to draw users’ attention to vulnerabilities on

their computers.

2.2.3.2 WannaCry

Ransomware is malware which disables the functionality of a computer in some way, then

displays a message demanding payment to restore the functionality. The WannaCry worm

is a combination of ransomware and worm. The worm component used the EternalBlue [3]

to gain access to target computers through a flaw in the SMB protocol. Once access was

gained, the target computer was encrypted and a ransom demand displayed to the user [65].

WannaCry was deployed in 2017. The main attack was slowed within a few days of its
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discovery due to emergency patches released by Microsoft, however unpatched computers

continue to be infected.

2.2.3.3 Petya

The Petya worm is a ransomware worm similar to EternalRocks and WannaCry and was

first discovered in 2016. It used the EternalBlue [3] exploit to gain access to target computers

via a vulnerable SMB port. It relocates and encrypts the master boot record (MBR) of a

victim computer, replacing it with a malicious MBR that shows the ransom demand [104].

An example of the Petya worm ransomware screen is shown in Figure 7..

Fig. 7.: An example of the Petya worm ransomware screen.

2.3 MALWARE DATASET

2.3.1 KDD99 DATASET

In much of our evaluation, we use the KDD99 malware dataset. The KDD99 dataset is



18

from the 1998 Defense Advanced Research Projects agency (DARPA) Intrusion Evaluation

under sponsorship of DARPA and the Air Force Research Laboratory (AFRL). The dataset

is 743MB and classify malware by attack types such as: denial of service attack(DoS), buffer

overflow, guess password, smurf DoS attack. MIT Lincoln Labs collected and distributed the

datasets for evaluation of intrusion detection systems. This dataset has been used in many

works for the malware classification problem [32,61].

2.3.2 CTU-13 DATASET

The CTU-13 dataset is based on a large collection [13]. This dataset contains a mix of

botnet, normal, and background traffic captured in the CTU University, Czech Republic,

in 2011. There are a total of 13 captures called scenarios of different botnet samples, each

scenario was executed with a specific malware, which used several protocols, and performed

different actions. The total size of this dataset is 1.9GB.

2.3.3 OTHER MALWARE DATASET

Another malware dataset is used, malware samples [18] were selected. This dataset is

290MB in size and contains 120 malware such as sality, blackhole, and zeus.

2.4 MACHINE LEARNING CLASSIFICATION METHODS

Classification is used to identify patterns in a dataset by classifying data according to

their attributes. To classify programs as malicious or benign, it is necessary to identify

the properties of each program. For example, malware classification depends on several

attributes like replication strategy, goal of creation, technique of propagation, etc.

Machine learning techniques are often used for classification. Machine learning makes use

of both supervised and unsupervised learning. Supervised learning is the process of learning

from the training dataset and making use of input variables and given output variables that

you then use to learn the mapping function from the input to the output. We approximate

the mapping function so that when we have new input data, we can predict the output

variables for that data. Unsupervised learning models the underlying or hidden structure,

also called distribution, in the data to learn more about the data. In unsupervised learning,

only input data is used and no corresponding output variables are used. In this section, we

provide a background for well-known supervised learning techniques.

2.4.1 NAIVE BAYES
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Naive Bayes is a collection of classification algorithms based on Bayes Theorem which

describes that probability of an event based on prior knowledge of conditions related to the

event. It is ideal for two or more classes because of the assumption of independence between

every pair of features, and it is highly scalable. The probability of each feature contained in

the data is independently treated in this type of machine learning. Independent attributes

are specified for each feature and classes are identified by which attributes belong to it.

When a new instance arises, the attributes of this instance is compared to those of each

feature and a decision is made.

2.4.2 RANDOM FOREST

Random Forest makes use of decision trees. A decision tree maps possible outcomes of

a series of related choices and weighs possible actions against one another based on their

costs, probabilities, and benefits and is used to map out an algorithm that predicts the

best choice mathematically. Random Forest is a supervised machine learning algorithm

that builds multiple decision trees and merges them together to get a more accurate and

stable prediction. It can be used for both classification and regression tasks. The basic

concept is to build independent subsets of the dataset to be used in multiple decision trees.

These collections of decision trees form a Random Forest and produce better prediction

accuracy [41].

2.4.3 SUPPORT VECTOR MACHINE (SVM)

A Support vector machine (SVM) [50] is a supervised machine learning algorithm gen-

erally used for classification problems. It is very effective in high dimensional spaces. It

creates a boundary by determining a two-dimensional boundary, a line, through the space

and creates classes 0 and 1, those above or below this line. This line constitutes a decision

boundary as follows:

• If the value calculated is greater than 0, the point is above the line, class 0.

• If the value calculated is less than 0, the point is below the line, class 1.

SVMs can use kernels in order to apply linear classification methods to non-linear data.

Kernel equations may be linear, quadratic, Gaussian, etc. We can use any function that

transforms the linearly non-separable data into a linearly separable one.

2.4.4 DEEP NEURAL NETWORKS
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Machine Learning (ML) is a process where the association of events with consequences

is performed. Deep learning refers to a class of ML techniques utilizing many layers of

information processing for pattern classification. Neural networks takes input and produces

a given output, achieved through the training process. A deep neural network (DNN) is

meant to solve complex problems with the use of computers and have beginnings in how

the human brain works. It represents one of the most efficient ways to solve problems

and is classified as deep learning. A DNN processes input information and aggregates this

data into key learning points. This learning approach can be done in three ways, namely,

unsupervised, supervised, and semi-supervised [49]. In this work a DNN is implemented to

understand malware.

2.5 DIMENSIONALITY REDUCTION METHODS

High-dimensional data containing images, videos, text, and other complex information

must be reduced in dimensionality in the preprocessing step of machine learning in order for

us to avoid many issues including over-fitting, high complexity, and over complicated machine

learning models. In addition, we must reduce the dimensionality to increase performance

while trying to maintain accuracy. We employed several methods that each can reduce the

complexity of high-dimensional data before feeding it to the DNN classifier. In our tests, we

evaluated four different dimensionality reduction approaches.

2.5.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is a tool used to reduce the dimensionality of large

datasets to a smaller set that still contains most of the information. PCA is a method

for incorporating a new set of unconnected attributes referred to as Principal Components

(PCs) from the attributes of a dataset. PCA reduces the dataset on a dimension basis, while

keeping the dataset variability at a maximum.

2.5.2 SINGULAR VALUE DECOMPOSITION

The Singular-Value Decomposition (SVD) is a matrix decomposition method used to

reduce a matrix to its constituent parts in order to make matrix calculations simpler. SVD

is a special technique of factorization that can be applied to any real or complex valued

matrix. SVD is an algorithm of dimensionality reduction from the scikit-learn library [90],

which is an implementation of randomized algorithm by Halko [59].
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2.5.3 NEURAL NETWORK AUTOENCODER

The neural network autoencoder is a type of DNN that can be used for dimensionality

reduction of the input data [70]. Autoencoding gives successful results in a wide variety

of applications such as document and image retrieval [35, 70]. It applies back-propagation,

which is setting the target values to be equal to the inputs. It compresses the input into a

latent-space representation, and then reconstructs the output from this representation.

2.5.4 T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING

t-Distributed Stochastic Neighbor Embedding (t-SNE) [27] is a procedure for dimension-

ality reduction that is perfectly adapted for embedding high-dimensional data into a space

of two or three dimensions. More precisely, t-SNE maps each high-dimensional entity into a

two or three dimensional point such that nearby points represent similar objects while dis-

similar objects are described by distant points. This property becomes crucial when dealing

with high-dimensional data lying on multiple low-dimensional manifold, which are related,

e.g., images of objects coming from different classes and observed from several viewpoints.

It has been used in a wide range of applications, including computer security research, music

analysis, cancer research, bioinformatics, and biomedical signal processing.

2.6 SUMMARY

There are two main types of cybersecurity attacks, exploiting internet protocol vulnera-

bilities and the use of malicious software. In this chapter we explain the process of normal

authentication and we discussed the deauthentication attack process. In addition, we showed

the different datasets we used to build our three intrusion detection systems (IDS). Further-

more, we mentioned the four different machine learning classifiers that we compared in order

to chose the best one for building the IDS, in terms of accuracy and performance. Finally,

we defined four feature reduction methods to increase the performance of the IDS.
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CHAPTER 3

RELATED WORK

This chapter reviews relevant methods suggested in literature to address deauthentication

attacks, worm traffic analysis, and malware classification and detection.

3.1 INTRUSION DETECTION SYSTEM FOR

DEAUTHENTICATION ATTACKS

Several methods have been proposed to mitigate the deauthentication DoS attack.

3.1.1 CRYPTOGRAPHIC METHODS

According to Nguyen et al. [88], a secret key can be established between a client and

the AP for authentication of deauthentication frames using a letter-envelope protocol. The

letter-envelope protocol generates two random primes, computes the product, sends the

value during initial connection, and gives it again during the de-authentication request. The

authors argue that this method can prevent deauthentication DoS attacks, but all client and

AP firmware must be upgraded.

Bellardo and Savage [38] suggest that authentication of all management frames would

encrypt the MAC address and therefore the attacker would not be able to spoof the MAC

address and could not carry out a DoS attack. Clients that do not upgrade their framework

will be not able to connect.

3.1.2 UPGRADING AND MODIFYING PROTOCOLS

Another method is to upgrade all nodes to the IEEE 802.11w standard [8]. IEEE 802.11w

forces authentication of management frames to be mandatory. Spoofing is prevented by

authentication, therefore, the deauthentication DoS attack is also prevented, but upgrading

to the 802.11w standard requires a firmware upgrade. In addition, this standard has a low

rate of adoption due to how recent the standard is, and therefore very few APs and clients

support it.

3.1.3 NON-CRYPTOGRAPHIC METHODS
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Agarwal et al. [22] carried out an experiment to prevent deauthentication DoS without

using cryptographic methods. They set a threshold on a given number of deauthentication

frames that were received by a client. For every client, if the number of deauthentication

frames exceeded the set threshold, a deauthentication DoS attack alarm was raised.

Bellardo et al. [38] suggest eliminating the deauthentication and disassociation frames,

or delaying them for a fixed interval of time (for instance, 10 seconds). If the client sends

a data frame within that delay period, the AP ignores the deauthentication frame because

clients are required to go back through the 4-way handshake process before sending data

frames and therefore it is assumed the deauthentication frame was not valid. However, this

approach may introduce problems where there is a period of time where a client associates

with multiple APs at the same time. This can cause problems with the routing and handoff

processses [33].

3.1.4 REVERSE ADDRESS RESOLUTION PROTOCOL (RARP)

Cardenas et al. [46] proposed using RARP (Reverse Address Resolution Protocol) in

order to detect spoofed frames. RARP maps a single MAC address to a single IP address

for each RARP returns multiple IP addresses for the same node, then the MAC address was

possibly spoofed and should be investigated further. This method can be circumvented by

attackers who spoof the IP address of the client. In addition, this method does not work for

clients who have multiple IP addresses assigned to the same network interface card [76].

3.1.5 CENTRAL MANAGER SERVER

Another approach, proposed by Ding et al. [51], is to use a Central Manager (CM), which

is an authentication server that manages one or more APs and instructs the AP to either

process the management message or ignore it. This approach only protects the AP and not

clients. In addition, the CM server adds additional delay to the network.

3.1.6 LIGHT WEIGHT AUTHENTICATION PROTOCOL

Johnson et al. [66] proposed the Light Weight Authentication Protocol in which a one-

bit authentication protocol is used. Wang et al. [107] added additional improvements. This

approach uses a keyed pseudo random bit stream. One bit is added for authentication on

each frame from this bit stream. The idea is that only the key holders know what the bit

stream is and therefore this ensures authentication. However, due to poor wireless reception

or noise, this data can be corrupted and lead to frame and synchronization loss. In addition,
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an attacker has a 50% chance of guessing the correct authentication bit. Increasing the

number of bits used for the authentication will decrease this probability, but will increase

redundancy.

3.1.7 DISASSOCIATION

More et al. [84] used a different approach, where disassociation is validated by restarting

the 4-way handshake once a disassociation request is received. Normally, if the client sends a

disassociation frame to the AP, the client will not respond to the 4-way handshake from the

AP. If the 4-way handshake is completed successfully then this indicates the disassociation

frame was spoofed. If the frame was not spoofed then the handshake fails and disassociation

takes place after a timeout. This approach has a couple of problems. In many cases spoofing

is used to change the assigned MAC address for many purposes such as hiding a computer

or allowing it to impersonare another network device; this is done for both legitimate and

illicit purposes. The delay in legitimate spoofing can cause handoff issues, and an attacker

can use this periodic forcing of the 4-way handshake as a DoS attack.

Another approach proposed by Hal et al. [60] is using the transient portion of the signal

when a wireless tranceiver first turns on and generating a fingerprint using this information.

This fingerprint is then tied to the MAC address and therefore can be used in anomaly based

intrusion detection. However, the detection system would then need to maintain a database

of fingerprints and MAC addresses for each node on the wireless network, which may prove

to be a difficult task in mobile networks.

Another approach is Relationship-based Detection [47]. The traffic that a particular

network node generates is unique to that node. If there is an attempt to spoof, this pattern

will change. This approach can be combined with the sequence number approach, described

in Section 3.1.8, in an IDS, but the solution needs a separate device for monitoring the

intrusion. Additionally, it can only detect the intrusion, but is not able to prevent the

attack.

Another possibility is to disable disassociation by asking the AP and clients to ignore

disassociation requests altogether. In this case, the association will just simply timeout and

the AP and client will transition to the disassociated state at that time. The problem with

this is that when a client, and in particular mobile client, wants to associate to a new AP,

the old AP will still associate to the client and now the client will be associated to both APs.

From the AP perspective, this may cause routing and handoff problems [33].
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3.1.8 SEQUENCE NUMBER

Guo et al. [58] proposed an approach where the sequence number field in the link-layer

header of IEEE 802.11 frames is leveraged. In this work there are two general approaches.

The first is to modify the wireless LAN interface drivers on both the APs and clients for

sequence number analysis. The other way is to use a monitoring station that is separate from

the APs and clients. By analyizing the sequence number in the wireless frames, spoofing of

the packets can be detected.

Xia et al. [112] proposed a different approach by using MAC sequence number tracking

and observing that IEEE 802.11 frames contain a 12-bit sequence number that is expected

to increment by one for each datagram being sent. These sequence numbers will remain

the same though in cases of packet retransmission. Typically only hardware can set these

sequence numbers because of the timing involved and software usually is not used for that

purpose.

One drawback to using the sequence number approach is if the sequence numbers are

assigned in a deterministic way, an attacker may be able to sniff the frames sent by the

client and use this information to predict the sequence number of the next frame.

3.1.9 OUR PROPOSED APPROACH

All of these proposed methods for prevention require modification of the node drivers.

No detection mechanism is available where node drivers are not modified, leaving such nodes

unprotected from attacks. In addition, these unmodified nodes will not be able to connect

with the modified system. In contrast, we propose a system that allows unprotected clients

to stay connected. More importantly, the IDS does not require the nodes to be modified.

This makes it backward-compatible and easy to roll out gradually. Finally, if the drivers

are modified we propose two prevention mechanisms, one using one-time passwords and the

other using machine learning.

3.2 INTRUSION DETECTION SYSTEMS FOR MALWARE AND

WORMS

In the following section, we review several methods that have been proposed to detect

malware attacks.

3.2.1 DEEP LEARNING APPLICATIONS ON IDS
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Recently researchers have used deep learning models to detect and classify malware [105,

109, 114]. Tao et al. [103] proposed using a supervised Fisher and Deep Auto-Encoder to

extract important features using the KDD99 dataset, which was described in Chapter 2. Kim

et al. [71] proposed using the Long-Short-Term-Memory algorithm in conjunction with the

Gradient Descent Optimization for an intrusion detection classifier and was able to achieve

an accuracy of 97.54% and a recall of 98.95%. In addition, this team was able to use the

Gated Recurrent Unit (GRU) and achieved a 97.06% recall, 10.01% false alarm rate, and a

97.06% accuracy rate. Furthermore, Staudemeyer et al. [100] proposed using LSTM networks

on the same KDD99 IDS dataset and was able to achieve an accuracy of 93.82% but at the

cost of taking longer to train. Gavrilut et al. [57] proposed a detection system using modified

perception algorithms. Some of these algorithms achieved an accuracy of 69.90% - 96.18%

depending on the algorithm used. However, the algorithms that had the best accuracy also

resulted in the highest number of false positives. The algorithm with the most balanaced

approach reducing the number of false positives had an accuracy rate of 93.01%. Singhal

et al. [97] proposed a detection method that uses the modified Random Forest algorithm in

combination with the Information Gain algorithm to gain a better feature representation.

The dataset in this work contained only portable executable files and therefore made feature

extraction generally easier. This work achieved an accuracy of 97% and 0.03% false positives.

3.2.2 BEHAVIOR-BASED DETECTION

Several recent works have analyzed network behavior for worm detection and classifi-

cation. Sarnsuwan et al. [94] use network-based Internet worm detection utilizing thirteen

packet features. Data mining algorithms such as Bayesian network, decision tree, and ran-

dom forest are used for classification of Internet worms, normal data, or network attack

data. Barhoom et al. [36] propose a model that makes use of data mining techniques by

combining different classifiers with an adaptive approach for detecting known or unknown

worms. Another technique proposed by Rasheed et al. [92] focuses on detecting polymorphic

worms. However, only a single worm, MSblaster, was used for testing. Tang et al. [102] pro-

posed an IDS using a Deep Neural Network (DNN) model. A visualization of the computer

system state during a worm attack requiring manual intervention by the user is presented by

Axelsson et al. [34]. It was observed that the worm request clusters were noticeably different

from the clusters formed by normal traffic.

3.2.3 FEATURE SELECTION
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Selecting the optimal features can improve the performance of a ML classifier without

compromising accuracy.

Mitra et al. [81] proposed a feature selection method that selects only a subset of features

to remove redundant features.

Amiri et al. [30] proposed a modified-mutual information feature selection (MMIFS)

based on the forward feature selection algorithm (FFSA) and linear correlation coefficient.

They performed experiments with the KDD99 dataset [5], and showed that their approach

effectively detects R2L (an attempt to gain unauthorized access from a remote machine such

as guessing the users password), and probe attacks, but performs less efficiently in case of

DoS and U2R (an attempt to gain unauthorized access to local root privileges).

Two feature selection approaches called Random Forest-Backward Elimination Ranking

(RFBER) and Random Forest Forward Selection Ranking (RFFSR) were proposed by Al-

Jarrah et al. [23]. The RFBER approach eliminates lower weight features and checks the

effects on detection rate, while RFFSR forms one subset with three of the most weighted

features and the rest of features in other subsets. The detection rate was evaluated by adding

features one by one. Similarly to previous approaches, these approaches are evaluated using

the KDD99 dataset.

Battiti et al. [37] proposed a mutual information-based feature selection algorithm MIFS

that selects a subset of features in order to remove redundant features. The algorithm uses

both the feature-feature and the feature-class mutual information for the selection of features.

In addition, it uses the greedy technique in order for the features that maximize information

to be selected.

Eesa et al. [53] presented a novel feature selection technique, based on the cuttlefish

optimization algorithm (CFA). In this work, the authors try to identify the optimal subset

of features using CFA and used decision tree for the selection of features. Again, the KDD99

dataset is used for evaluation of detection rate (DR), false positive rate (FPR) and accuracy

rate (AR). Experimental results show that the value of DR, FPR and AR improved with

fewer number of features as compared to using a higher number of features.

In order to select more relevant features and eliminate irrelevant features, Karim et al.

[67] proposed a hybrid selection technique, relying on symmetrical uncertainty filtering and

information gain methods. In the first phase, information gain and symmetrical uncertainty

filtering are used for creating two subsets of reliable features. Then, these two subsets are

merged, ranked and weighted to extract the most important features. This approach achieves

a better detection rate compared to other feature selection approaches.
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Mukherjee et at. [86] proposed one of the first works to tackle feature reduction methods.

They developed a feature vitality based reduction method (FVBRM) and compared it with

the Gain Ratio (GR), Correlation-based Feature Selection (CFS), and Information Gain

(IG) feature selector. The authors used WEKA 3.6 machine learning tools for experimental

analysis and achieved a significant improvement in detection rate and accuracy in case of

R2L attacks.

Lin et al. [75] proposed a novel feature representation technique called cluster center and

nearest neighbor (CANN), which uses the k-nearest neighbor (k-NN) classifier for intrusion

detection. CANN first converts the original features of a dataset into one-dimensional dis-

tance, and then the K-NN classifier uses this new dataset representation for training and

testing for classification. Based on experimental results with the KDD99 dataset, they show

that CANN works efficiently compared to support vector machine (SVM) and other similar

k-NN classifiers. It is shown that it has higher detection and accuracy rates, and a lower false

alarm rate. The pattern of two types of attacks: an attempt to gain unauthorized access

from a remote machine, and an attempt to gain unauthorized access to local root privileges.

These attacks are not detected by CANN effectively.

Al-Yaseen et al. [26] proposed a multi level hybrid IDS using support vector machine

and extreme learning machine. This approach reduces the training dataset using k-means

algorithm which reduces the training time of the classifier. Result-wise, this approach also

achieved a higher accuracy rate and a lower false alarm rate. However, the classification of

a totally new and unknown attack is not covered in this study.

In Sabry et al. [53], optical subset features are searched by a modified version of the

cuttlefish algorithm and tested using a decision tree. It works with 20 or fewer features and

gives better detection rate (DR) and accuracy rate (AR).

The review of the work mentioned above indicates that selecting an optimal number of

features helps to decrease training time and improve detection rate and accuracy. However,

finding the optimal features is still an open issue for various applications in a generic scenario

with known and unknown attacks.

3.3 SUMMARY

Many researchers proposed methods to prevent deauthentication denial of service (DoS)

attacks. All of the proposed methods require driver or hardware modification to the node,

and the unmodified nodes will no longer be able to connect to modified systems.
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Regarding malware, many researchers proposed signature based and behavior based de-

tection mechanisms using machine learning. The use of machine learning introduces perfor-

mance issues requiring the use of high performance CPUs. Signature based methods are not

able to detect malware that is not in the database. In addition, machine learning alone is

not able to trace an attack and therefore see the overall big picture.

Finally, many researchers proposed several tools to both select the optimal features and

compress them. Most of these tools are general tools and can be used on any dataset.
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CHAPTER 4

INTRUSION DETECTION SYSTEM FOR

DEAUTHENTICATION ATTACKS

WiFi provides two distinct logical wireless links: a data link and a control and manage-

ment (CM) link. The data link is protected by encryption, however the CM link is not and

this leaves it vulnerable to deauthentication DoS attacks. We propose a detection mechanism

using machine learning that does not require driver modification and propose two prevention

mechanisms that do require driver modification.

4.1 ARCHITECTURE

The IDS consists of two main parts— a packet sniffer and a data extractor, together

with an machine learning (ML) classifier to make a decision about the presence of an attack.

First, packets are captured with corresponding hardware in monitor mode then are analyzed

to extract necessary data features. The extracted data is used as an input to the second part

of the project, a trained ML-based classifier, and its output is used for the determination of

attack probability and prevention. Such an architecture allows the division of the project

into a few independent modules, which can be combined to obtain a complex solution.

4.1.1 DNN ARCHITECTURE

The DNN model uses the classical fully-connected multilayer classifier structure with

rectified linear activation [87]. Activation of the output layer is selected to be sigmoid,

widely used for the binary classification problem. The precise structure is shown in Table 1..

The training was performed with the help of the Adam optimizer [68] with parameters set

to the proposed values in the original work. The model was trained until convergence was

reached, which was determined by the difference in loss between two consecutive epochs to

be less than 0.0001. The logarithmic loss function, also known as binary crossentropy was

utilized.
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TABLE 1.: DNN architecture.

Layer Number of units Activation

Fully-connected 10 Relu

Fully-connected 10 Relu

Fully-connected 10 Relu

Fully-connected 10 Relu

Fully-connected 1 Sigmoid

4.1.2 DATA PREPARATION

ML-based instrumentation, first and foremost, needs large amounts of data to be trained

and is very sensitive to data choice and its quality. In that case, in order to optimize

the results, data was gathered in situ using the aircrack-ng utility run on a laptop with

Kali Linux, while another laptop was working as an AP. Four clients were present on the

network— two smartphones from different brands, one tablet and one laptop. All clients

were on the same network segment, as shown in Figure 8..
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Fig. 8.: Setup to capture traffic for dataset generation.

We captured 13 hours of traffic that included normal traffic and normal deauthentication

packets. An attack was initiated from another laptop with its internal network card running

in monitor mode. For the attack, the aireplay-ng tool from the above-mentioned aircrack-ng

utility set was used, as well as the scapy-deauth [4] script, which uses the Python scapy

library to generate deauthentication packets. The attacker laptop was not associated with

the network. The MAC addresses of the AP and clients were obtained using airodump-ng

utility from the same utility set. The airodump-ng program was also used to capture data

with its -w command line parameter.

The dataset consists of eight different traffic samples. We captured normal traffic with

legitimate deauthentication packets and multiple different mixtures of normal and deauthen-

tication attack traffic on a local network.

4.1.3 FEATURE EXTRACTION
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With the help of the Wireshark tool, we analyzed the gathered data and, after comparing

to recent literature [21], a few features were selected to be used as criteria for the detection

of deauthentication DoS attacks. A list of these features, together with the motivations for

our choice, is provided below:

1. Number of deauthentication frames. During normal network work, the number of deau-

thentication frames sent by both sides is very low, usually not more than 1 per few

minutes. During an attack, to make it effective, deauthentication frames are sent in

large amounts, up to thousands per second. The probability that a network is under-

going a deauth-DoS attack increases with this number.

2. Number of association packets. These packets are markers of trials to connect to an AP.

During an attack, this number increases with respect to its value under normal condi-

tions because disconnected devices are sending numerous association frames trying to

reconnect to the AP and being disconnected.

3. Number of authentication frames. Similar to association packets.

4. Number of data frames. During an attack, the amount of effective data frames ex-

changed between clients and the AP decreases because the length of the session is

short. This is due to frequent disconnections induced by the deauthentication DoS

attack.

5. Time between de-authentication and re-authentication. In typical networks, this time

difference varies from minutes to hours, while under attack it significantly decreases

to fractions of a second. This observation comes from the fact that a genuine client

will rarely reconnect immediately to an AP after it is disconnected from the same AP,

while it is always the case under a deauthentication DoS attack.

4.1.4 TRAINING OF CLASSIFIERS

Two machine learning classifiers are used to train the model, a decision tree classifier

and a deep neural network (DNN). The decision tree classifier used is a part of the scikit-

learn project, a Python library for machine learning [90]. The classifier uses the CART

algorithm [45], which is similar to the C4.5 [91] algorithm.

The DNN classifier was trained on the same dataset as the decision tree, and its output

was used in the same manner to analyze network activity. We captured 13 hours of traffic
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that contains both normal deauthentication packets and traffic that has deauthentication

packets from an attack.

4.1.5 PREVENTION USING MACHINE LEARNING

Once an attack is detected by the system, packets are sent out to the protected client

nodes telling them to drop all deauthentication packets for a period of time. If another attack

is detected, additional packets are sent indicating the clients should increase the period

duration they should continue dropping deauthentication packets. This method helps deter

an attack and the clients will remain connected to the network.

4.1.6 PREVENTION USING ONE-TIME PASSWORD

To offer protection against other attacks as well, such as disassociation attacks, we pro-

pose a technique that uses a one-time password (OTP) within a control-management (control

and management (CM)) frame which is mutually exclusive to the ML prevention mechanism.

The OTP is based on two premises: password expiration and random generation. There is

only one attempt to give the password within a limited time frame and since the password is

pseudo-randomly generated, it cannot be guessed. If the correct OTP is not provided when

requested, a legitimate deauthentication packet is sent, as shown in Figure 9..
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Client

1. Probe Request

2. Probe Response

3. Authentication open seq: 1

4. Authentication open seq: 2

5. Association request

7. Data

6. Association response

AP

8. Deauthentication with OTP

Fig. 9.: Demonstration of legitimate deauthentication

4.1.6.1 Implementation of OTP security in 802.11

The CM frame of a deauthentication packet in the 802.1X protocol includes a reason code

as shown in Figure 10.. We use reason code 67, an unreserved code, to indicate that we are

going to add an OTP to the packet. The packet is lengthened by 17 bytes to incorporate a

128-bit OTP, plus a null terminator. By using this special reason code as well as OTPs that

are known to only the client and AP, the AP can reject the illegitimate deauthentication

packets.

This proposed augmentation involves modifying the existing drivers for Wi-Fi clients as

well as the software that hosts the Wi-Fi AP. We provide a C implementation of the Wi-Fi

drivers for Linux, adjusted to accept these modified packets and verify them against OTP,

as well as a C++ modification of hostapd, Linux software for hosting an AP.
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MAC header

22 6 66 2 4

Frame

Control Duration DA SA BSS ID

Reason code   

bits

bytes

Body FCSSeq

ctrl

Fig. 10.: Format of deauthentication control and management frame

4.1.6.2 OTP Generation

OTP generation is done via a Sandwich-chain [64]. After two secrets are exchanged

between AP and STA as shown in Figure 9., they can independently generate as many

OTPs as they need. A hash chain is implemented by taking a number of hashes of the

original secret. A Sandwich-chain uses a secondary chain, a mechanism by which a step-up

chain can be used as a salt for the secondary chain; this offers the advantage of an efficient

authentication without re-computing previous secondary chains. An adversary will not be

able to predict the next OTP because a cryptographically secure hash cannot be reverse

engineered. The system implements the hash chain generation. The program expects a

MAC address from the client and the count number of the OTP that it should reply with

for that client. The OTP of the proper count is written back to the FIFO file. A FIFO file

is a special file similar to a pipe, but it has to be opened at both ends simultaneously before

you can proceed to do any input or output operations on it. The AP and STA send each

other the OTPs in their Wi-Fi deauthentication packet. They also use the OTP generation

program to check that an OTP was the correct one that it was expecting.

There are two hash functions, one for the string and the other for integers that are used

within the string hash function. The second hash function uses several hexadecimal number

operations such as addition, subtraction, XOR, and bit-shift, to accurately and sufficiently

shuffle the resulting numbers.

The pseudo-code for the AP’s actions when receiving a deauthentication packet from the
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STA is shown in Algorithm 1. The AP code keeps track of all STAs that connect and have

the OTP modifications enabled during its run-time. A linked list is initialized during the

configuration of basic service set (BSS). Entries in the list include the MAC address and

the count number for the OTP. This new linked list data structure was added in order to

persist tracking of the connecting clients, since all other client information is destroyed on

disconnection of the client from the network.

Algorithm 1: Legitimate deauthentication

RECEIVE packet from STA

if reason code = 67 then

RETRIEVE OTP from packet by reading 16 bytes

OPEN FIFO file and request OTP from C++ binary

if binary OTP equals packet OTP then

ACCEPT deauthentication packet

else

IGNORE packet

end

end

4.2 EVALUATION

In this section, we evaluate our proposed intrusion detection system which detects deau-

thentication attacks, using machine learning (Section 4.1.4). We conducted 5 experiments

each approximately 35 minutes in duration.

• Experiment 1 is broadcast client deauthentication, where packets were sent using

FF:FF:FF:FF:FF:FF as the destination address, so all clients were disconnected from

the AP at once.

• Experiment 2 is attack on AP, where packets, masquerading as deauthentication frames

from connected clients, were sent to the AP.

• Experiment 3 is broadcast deauthentication with pause, which is the same as broadcast

deauth, but attack packets were sent with a one second pause to let the client get

reconnected before the next disconnect occurs.

• Experiment 4 is a normal/attack batch deauthentication with 50 normal deauthentica-

tion and 50 attack deauthentication with 30s between all the deauthentication packets.
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• Experiment 5 is a normal/attack alternating deauth: the normal deauth, attack, 30s

wait, and the sequence is repeated 50 times.

4.2.1 EXPERIMENT SETUP

An AP is setup on a laptop using a standard Linux hostapd utility and four clients are

connected to the AP. The attack was performed using a second laptop, running Kali Linux,

by executing the aireplay-ng utility and the Python script mentioned earlier to generate

deauthentication packets.

4.2.2 RESULTS

Table 2. and Table 3. show the precision, recall, and F1 score for the classification task

on the test dataset. The DNN classifier achieved higher precision and recall, than the DT

classifier.

TABLE 2.: Precision, recall, F1-score for DNN classifier.

Class Precision Recall F1-score

Normal 0.9966 1 0.9983

Attack 1 0.9951 0.9975

TABLE 3.: Precision, recall, F1-score for DT classifier.

Class Precision Recall F1-score

Normal 0.9934 1 0.9967

Attack 1 0.9905 0.9952

Table 4. shows the results for the five experiments using both decision tree (DT) and

DNN classifiers.
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TABLE 4.: Performance of decision tree DNNs classifiers in detecting deauth attacks.

Exp FP DNN FP DT TP

1 0 2 200

2 0 5 300

3 0 1 200

4 0 1 50

5 0 3 50

Although the two classifiers achieved similar accuracy with the decision tree returning

99.8% and the DNN at 99.61%, the decision tree classifier flagged a lot of false positives

while the DNN did not flag any. However, both classifiers were able detect all illegitimate

deauthentication packets. When we consider the false positives and accuracies together, the

DNN approach achieved better results than the decision tree classifier. Moreover, a classifier

with high threshold can be used to configure the sensitivity per case, which makes it a

promising base for deauthentication attack prevention.

We conducted another experiment using an access point (AP), a client (C), and an

attacking machine (A). We installed our intrusion detection system on the the AP. Scripts

were running on C and A to send deauth packets with a probability of 20%. Thus, on average

one normal deauth and one modified deauth packet were sent every 10 seconds. The script

running on C sent only normal deauth packets with its own MAC address, whereas the script

running on A sent modified deauth packets that contained the MAC address of the client

C. The experiment was conducted for one hour, and generated 593 attack and 560 normal

deauths.

The intrusion detection system captures network traffic and saves it as PCAP files. We

extract the selected features from the PCAP files and after data normalization we save the

data into CSV files. The CSV files were sent to two separate machine learning classifiers,

one is DNN and the other is decision tree. Using the DNN classifier we detected 657 attacks,

which could be justified by the fact that in some cases single attacks are detected twice.

The records were filtered by the difference in timestamps between two consecutive alarms.

After filtering the records, 591 attacks were observed, which corresponds to a detection rate

of 99.7%. The false positive rate was observed by manual means to be zero.

Using the decision tree we detected 1137 attacks. Assuming all of the true attacks were

detected by the decision tree, this gives us a false positive rate of 47.8%, which is evidence

that decision tree is not suitable for solving this problem.
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4.3 SUMMARY

This work proposes an intrusion detection system and two mutually exclusive method-

ologies which can prevent deauth DoS attacks for IEEE 802.11 networks. One mechanism

is based on one time password (OTP) prevention: only deauthentication packets having the

correct OTP and reason field have been recognized as valid by both the AP and STA, which

is a proof of the efficiency of this implementation. In the other approach, the Deep Neural

Network technique based on Machine Learning reached 99.61% accuracy in the detection of

genuine connections and attacks. Therefore, the proposed mechanisms can prevent the dis-

association and deauthentication attacks leading to service interruptions. They are widely

applicable, and we expect that they will be productive and effective to prevent deauth attacks

against both present and future IEEE 802.11 devices.
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CHAPTER 5

INTRUSION DETECTION SYSTEM FOR WORM ATTACKS

Our proposed hybrid tool first employs a visualization tool to explore network traffic

and detect suspicious predefined worm activity followed by a machine learning approach to

detect and classify worms based on their network behavior. The visualization tool cannot

detect worms which alter their network behavior. Therefore, a machine learning approach

is used to further classify and detect modified known malware and unknown malware with

similar behavior.

5.1 ARCHITECTURE

The machine learning approach is employed to classify and detect predefined worms and

undefined worms with similar network behavior. Once the machine learning tool detects

suspicious activity, then the visualization tool will be used to further analyze the network

traffic. In analyzing the traffic, the visualization tool displays suspicious worm activity,

traces the attack, and displays the affected nodes.

Our system architecture is shown in Figure 11.. Using a PCAP file as an input to

the ipsumdump utility [7], we extract features as a CSV file. The preprocessor converts

the features into a numerical array and normalizes the data. The data is passed to the

deep neural network (DNN) for detection of worms. If the machine learning tool detects

suspicious activity, the visualization tool is used to display the suspicious worm activity,

trace the attacks, and display the affected nodes.
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Fig. 11.: System architecture

We use the following features from ipsumdump:

• wire-length: Overall length of captured packet, including headers

• length: IP packet length

• protocol: IP protocol

• ip-id: IP-ID field

• ip-sum: IP checksum

• ip-ttl: IP time to live field

• ip-tos: IP type of service field

• ip-hl: IP header length

• capture-length: Length of IP data

• sport: Source TCP or UDP port

• dport: Destination TCP or UDP port

• payload-md5-hex: MD5 checksum of payload

• tcp-seq: TCP sequence number

• tcp-ack: TCP acknowledgement number
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• tcp-window: TCP receive window

• udp-length: UDP length, reported in the header

• icmp-type: ICMP type

• icmp-code: ICMP code

5.1.1 MACHINE LEARNING

The multilayer perceptron (MLP) classifier [93] was used for solving the problem of

distinguishing different patterns in malware traffic. Scaled exponential linear units (SELU)

[69] were used in the hidden layer, which was found to be more efficient than classical

rectified linear units (ReLU). The output layer of the classifier has the Softmax activation

function [44], which outputs the probabilities of the input belonging to a specific class. This

structure of the neural network is known to be most effectively trained when combined with

the cross-entropy loss function [43]. In addition, dropout layers were added after each fully-

connected layer to prevent overfitting [98]. The DNN classifier was trained for 50 epochs

using the Adam classifier with parameters following the original paper [68].

As a proof of concept, we trained the DNN model with five real time PCAP capture files

from online sources [15–17] containing captures of worm traffic. In addition to the worm

traffic, we also captured normal network traffic generated by our machine. The overall size

of the processed dataset for training was 11.2 MB of malicious traffic and 85.1 MB of normal

traffic. The test dataset was 10% of the entire dataset.

5.1.2 WORM VISUALIZATION

One of the main contributions of this work is building the visualizer IDS with D3. D31

is a JavaScript library that is used to create data visualizations. The data generated by

computer networks is considerably large and visualization methods such as D3 are necessary

to interpret and process this overwhelming data. The visualization tool is designed to help

interpret the large amount of data and display this data on the screen in a visually appealing

format.

The worm visualization analysis tool presented in this paper uses a Finite State Machine

(FSM) model, which defines the expected behavior of worm network traffic. When the

behavior deviates from this expectation, the FSM will not display the new states, however,

1https://d3js.org
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we will still be able to detect the worm attack using machine learning. Our packet analysis

tool processes one or more captured network PCAP files and produces a JSON file. The

JSON file is provided to the visualization tool to be interpreted. We use our FSM model

to divide the packets into four categories: TCP, SMB, FTP, and Exploit. Packets in the

Exploit category are various worm states of attack. Four colors have been assigned to these

categories in order to visually determine the kind of packet. Exploit packets are red, and

any red activity in the display can be associated with potential or actual worm attacks.

Fig. 12.: Worm visualization. The FSM of the detected worm is shown on the right.

An example of the visualization tool can be seen in Figure 12.. The visualization tool

displays each node represented by a wedge shape. Nodes are grouped based on their IP

address and a specific color is assigned based on the network the node belongs to. The

wedge shape is then filled depending on the overall percentage of the defined packet activity.

This makes it easier to observe the overall activity distribution on the nodes during an

analysis session. However, if a worm attack is detected, the activity area will be displayed

as red. Packet transmissions between any two nodes are depicted by an arc made in the

color of the packet category. Since the visualizer shows the network traffic over time, these

interconnecting arcs will change and fade color as other categorized packets are transmitted.

The complete PCAP session, whether from one or multiple files, is combined into a single
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timeline. We can navigate from the beginning to the end and to any point along the timeline

of the session. The visualizer will update to show all activity up to the current index. Along

with the pictorial representation of inter-connectivity and packet activity, the visualization

tool displays packet statistics. At the center of the main graph the current packet type is

always displayed. This text continuously and quickly updates based on the current timeline

position. There is an overview of general TCP statistics, showing different TCP packet types

and counts for each type. This is also dynamically updated with the position of the timeline.

When a node is clicked, detailed statistics for that node is displayed, as seen in Figure 13..

When clicking on the connection between two nodes, we can see detailed FSM information.

As with all parts of this tool, these statistics update dynamically based upon the current

timeline position. This detail helps us determine in which direction the infection is occurring.

From this view, we can click on a specific packet and see even more detail about its state.

By changing the index on the timeline, it is easy to determine which node gets infected first

by seeing the first node turn red, we can then determine the source of the attack.

Fig. 13.: Detailed Statistics for Each Node

5.2 EVALUATION

5.2.1 WORM TRAFFIC GENERATOR USING NS3 SIMULATOR
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NS-32 is an open-source discrete event network simulator. Using Wireshark, a packet

capture and analysis tool, we gather information about a particular worm. This information

is fed into the simulator to simulate an attack from the worm. We simulate an attack because

it is very difficult to get all attack data from online sources as many companies hide details of

the attack for security reasons. Due to the hiding of the data, we cannot see the propagation

of the worm throughout the network. Using a test network and the simulator allows us

to simulate an attack and provides us with complete data about the attack giving a clear

picture of the network behavior of the worm. In addition, by using the traffic generator we

can change the network topology and simulate multiple worm attacks, capturing the attacks

to PCAP files.

The network simulator configuration consist of six nodes in total as shown in Figure 14..

Nodes 0 and 1 are in Subnet 1. Nodes 3, 4, and 5 are in Subnet 2. Node 2 is a router that

exists in both subnets and routes the traffic through them.

Fig. 14.: Simulated evaluation network

The generated traffic consists of normal traffic, such as SMB and FTP, and multiple

packets containing the behavior of the Sasser and Slammer worms.

5.2.2 EXPERIMENT

We performed four experiments to demonstrate the ability of our method to analyze

network traffic.

In the first experiment, we analyze the performance of our DNN to classify network traffic

as being part of Sasser, Slammer, Eternal Rocks, Wannacry, or Petya worm attacks or as

being normal traffic. Recall that our dataset, described in Section 4.1, had 11.2 MB of worm

traffic and 85.1 MB of normal traffic. We used 90% of the dataset for training and 10% of the

2https://nsnam.org



47

dataset for testing. Table 5. shows the precision, recall, and F1 score for the classification

task on the test dataset. Our DNN achieved high precision in most cases. The precision for

Sasser was lower, likely due to its high similarities to other worms. We observed low recall

for the Petya worm, likely because its sample included normal traffic packets. We note that

our classification of normal traffic was at 99%, which indicates that our system would have

relatively low false alarms.

TABLE 5.: Performance of the DNN on classifying worm and normal traffic with known

worms.

Name Precision Recall F1

Sasser 0.8387 0.8125 0.8254

Slammer 1.0000 1.0000 1.0000

EternalRocks 0.9650 0.8894 0.9257

Wannacry 0.9581 0.9970 0.9772

Petya 0.9444 0.3119 0.4690

Normal 0.9985 0.9998 0.9991

In the second experiment, we tested the system using a PCAP file containing both Sasser

and Slammer worm traffic, which was generated using our NS-3 worm traffic generator tool.

The PCAP file was applied as the input to the detection system and yields the results shown

in Table 6.. Our system uses packet by packet analysis to detect worms. The percentage of

packets classified as each type of worm (i.e., probability) are calculated as

Pn =
ΣV [n]

N
, (1)

where V [n] is the vector of percentage of packets and N is the number of vectors. In cases

where the worm consists only of a single packet, the percentage of packets is low. In other

cases where the worm attack consists of multiple packets, the percentage of packets is high.

Despite the Slammer attack consisting of only one packet and having low percentage of

packets, our system was still able to detect it.
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TABLE 6.: DNN classification probability on the simulated Sasser and Slammer worms.

Name Probability

Sasser 76.79

Normal 20.30

Slammer 00.12

In the third experiment, we wanted to test the system on a previously unseen, but similar

worm. The main advantage of a DNN-based analyzer is the possibility to detect worms that

may not be explicitly present in its training dataset. We obtained a sample of the NotPetya

worm from CTU captures [14] and tested it with our classifier. NotPetya has similar, but not

exactly the same, network behavior as the Petya worm. Table 7. shows that the DNN found

60% of packets similar to Petya due to the fact that the NotPetya trace was similar to the

Petya worm, which shows that the DNN can detect worms with similar network behavior.

TABLE 7.: DNN classification probability on the unknown NotPetya sample.

Name Probability

Petya 60.46

Normal 22.75

WannaCry 12.06

Finally to further validate our DNN, we classified a sample of normal traffic obtained from

Netresec3. Our DNN reported that 99.996% of the traffic was normal packets, successfully

classifying the normal traffic.

5.3 SUMMARY

In this work, we have presented a hybrid worm detection and analysis approach. We

trained a DNN classifier on the network traffic produced by several worms and normal net-

work traffic. On the five worms tested, our classifier had an average precision of 94.1%. We

3https://www.netresec.com/?page=PCAP4SICS
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also successfully classified a set of normal traffic with a 99.99% probability. In addition, we

used our trained classifier to detect worm traffic that was unknown to the classifier but had

network traffic similar to one of the known worms. The second part in our hybrid approach

was the development of a visualizer based on D3 to observe the network and infection be-

havior of identified worms and to trace the attacks. The proposed hybrid approach provides

better insight on worm activities and better detection of worms that have similar network

behavior. Finally, we were able to build a worm traffic generation tool using ns-3.
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CHAPTER 6

NNIDS - NEURAL NETWORK BASED INTRUSION

DETECTION SYSTEM

The goal of this work is to develop a system that uses a novel approach in real-time

traffic analysis to detect and classify malware. It does not try to analyze the traffic itself,

but extracts the secondary data features which contains a great deal of information about

overall network state. The data used in the current system has 90 dimensions which is much

more than usually used for deep neural network (DNN) classifiers, therefore allowing better

accuracy in this analysis. The utilization of this large dataset of malware, used to train the

DNN, allows for detection of malware, not only in the dataset, but also those which are not in

the dataset but have similar network behavior. Here, two smaller dimensional DNN systems

are used in this new approach to detect malware. This leads to a decrease in computational

power over one larger dimensional DNN. Hence a real time monitoring system for malware

can be constructed. Four machine learning classifiers are analyzed to determine which is best

for accuracy and performance. In addition, a heuristic prediction evaluation is performed.

6.1 ARCHITECTURE

The overall structure is shown in Figure 15.. A data packet sniffer captures all data

packets transferred in protected networks. The data obtained from the hardware sniffer

is preprocessed with the analyzer, which extracts the necessary features from the capture

file. The set of features saved is then analyzed using the DNN classifier. The output is the

probability of the maliciousness of the data stream in the network.
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Fig. 15.: System overview

6.1.1 PCAP ANALYZER AND DATA EXTRACTOR

A data packet sniffer is a software tool that records the data flowing over network links

in real time. Packets are saved in the PCAP (Packet CAPture) format. We extract features

from the captured network files. This is done by using the tcptrace [89] utility, which is able

to extract 90 data features from the capture files as shown in Table 8.. As a result of this

step, a CSV file with the extracted data (one row for each flow in the PCAP file and 90

features per flow) is created.



52

TABLE 8.: TCPTRACE features.

0 conn 30 rexmt data bytes b2a 60 avg segm size b2a #

1 host a 31 zwnd probe pkts a2b 61 max win adv a2b

2 host b 32 zwnd probe pkts b2a 62 max win adv b2a

3 port a 33 zwnd probe bytes a2b 63 min win adv a2b

4 port b 34 zwnd probe bytes b2a 64 min win adv b2a

5 first packet 35 outoforder pkts a2b 65 zero win adv a2b

6 last packet 36 outoforder pkts b2a 66 zero win adv b2a

7 total packets a2b 37 pushed data pkts a2b 67 avg win adv a2b

8 total packets b2a 38 pushed data pkts b2a 68 avg win adv b2a

9 resets sent a2b 39 SYN/FIN pkts sent a2b 69 initial window bytes a2b

10 resets sent b2a 40 SYN/FIN pkts sent b2a 70 initial window bytes b2a

11 ack pkts sent a2b 41 req 1323 ws/ts a2b 71 initial window pkts a2b

12 ack pkts sent b2a 42 req 1323 ws/ts b2a 72 initial window pkts b2a

13 pure acks sent a2b 43 adv wind scale a2b 73 ttl stream length a2b

14 pure acks sent b2a 44 adv wind scale b2a 74 ttl stream length b2a

15 sack pkts sent a2b 45 req sack a2b 75 missed data a2b

16 sack pkts sent b2a 46 req sack b2a 76 missed data b2a

17 dsack pkts sent a2b 47 sacks sent a2b 77 truncated data a2b

18 dsack pkts sent b2a 48 sacks sent b2a 78 truncated data b2a

19 max sack blks/ack a2b 49 urgent data pkts a2b 79 truncated packets a2b

20 max sack blks/ack b2a 50 urgent data pkts b2a 80 truncated packets b2a

21 unique bytes sent a2b 51 urgent data bytes a2b 81 data xmit time a2b

22 unique bytes sent b2a 52 urgent data bytes b2a 82 data xmit time b2a

23 actual data pkts a2b 53 mss requested a2b 83 idletime max a2b

24 actual data pkts b2a 54 mss requested b2a 84 idletime max b2a

25 actual data bytes a2b 55 max segm size a2b 85 hardware dups a2b

26 actual data bytes b2a 56 max segm size b2a 86 hardware dups b2a

27 rexmt data pkts a2b 57 min segm size a2b 87 throughput a2b

28 rexmt data pkts b2a 58 min segm size b2a 88 throughput b2a

29 rexmt data bytes a2b 59 avg segm size a2b 89 Unnamed

6.1.2 DUAL DNN MALWARE DETECTION AND CLASSIFICATION
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The 90 data features are extracted from the PCAP file and fed into the DNN classifier.

The DNNs were built using the Keras framework [48]. In this work, we propose using two

DNN classifiers. The first classifier is limited to only determining if the traffic is normal or

suspicious. Upon detection of suspicious activity, the second DNN will further classify the

network traffic based on our malware dataset. The second DNN is a multiclass classifier

which tries to assign the name of known malware, from the dataset it was trained on, to

the input data. Probabilities of malware traffic belonging to one of the known malware are

generated, which can be helpful for heuristic detection.

6.2 EXPERIMENTS AND RESULTS

For detection we used a collection of PCAP files containing the malware dataset, which

is 290MB in size and contains 120 malware such as sality, blackhole, and zeus. Malware

samples [18] were selected together with ten samples of normal network traffic [6,9, 18].

As a proof of concept, a realtime monitoring system was built using simple bash scripting.

The first step is to capture traffic at specific intervals (how often we capture traffic) and for

specific durations (how long is each capture) to be determined by user configurable variables.

The second step is to extract the 90 features for each PCAP file and save it as a CSV file.

Finally, these CSV files are fed into the first DNN classifier to make a decision to determine if

this is malicious traffic. Once malicious traffic is detected, the CSV file is fed into the second

DNN classifier to determine which malware family this traffic belongs to. The analysis of

detection rates was done by sending malware PCAP files through a virtual machine interface

and analyzing it in real-time.

6.2.1 SINGLE VS. DUAL DEEP NEURAL NETWORK CLASSIFIERS

Initially, the system only consisted of a single DNN classifier. The single DNN classifier

performed malware detection and classification on all network traffic observed. The single

DNN classifier is able to perform malware detection as well as classification, but we used

the fact that most of the traffic going through the IDS will be normal traffic to redesign

the system in order to enhance its performance. Thus, we add a small preliminary detector

which will filter out the normal traffic and pass only suspicious traffic to the second classifier.

The new system uses two DNN classifiers to detect malware network traffic. This de-

creases data processing time by about 40%. The performance of this dual-DNN system is

higher in comparison with one large DNN because the data is pre-filtered by the analyzer.

When only normal traffic is flowing through the IDS, both single and dual DNN classifiers



54

have the same performance. In this experiment, the same cross-validated malware dataset

was analyzed using the single and DNN models separately. The results are summarized in

Table 9.. As the data shows, the DNN system is about two times faster than the single

DNN in prediction and three times faster in training than the original detector. During

this experiment, almost identical accuracy was observed among the different methods. The

single classifier’s training time is more than three times the dual classifier’s.

TABLE 9.: Accuracy and performance of dual and single DNN classifier.

Training Prediction Accuracy

Single Classifier 214.75s 4.22s 0.998

Dual Classifier 65.03s 2.67s 0.997

6.2.2 CLASSIFICATION METHODS COMPARISON

As an alternative to the DNN classifier, other researchers have used different classification

methods to build intrusion detection systems [61] and we will compare our results to three

classifiers’ results using the same dataset. Hassan et al. [61] used Random Forest (RF) and

Support Vector Machines (SVM). We will also test against a Naive Bayes (NB) classifier.

6.2.2.1 Accuracy

The obtained results from building our DNN on the KDD’99 dataset were compared

with results from previous experiments [32, 61]. These are all shown in Table 10.. In terms

of accuracy, the DNN was the most accurate, while the SVM classifier comes second. The

Naive Bayes comes a close third after the SVM while Random Forest has the lowest testing

accuracy.

TABLE 10.: Testing accuracy.

Classifier Testing Accuracy

Naive Bayes 0.9271

Random Forest 0.9141

SVM 0.9299

DNN 0.9997

A loss function is a method used to evaluate how well an algorithm models a dataset. If
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the predictions are inaccurate, the loss function will output a higher number. We performed

a 10-fold cross-validation for the DNN classifiers, and the results are shown in Table 11..

TABLE 11.: Accuracy and Loss of Dual and Single DNN Classifier.

Classifier Accuracy Loss

Single Classifier 0.9975 0.0095

Dual Classifier 0.9998 0.00083

6.2.2.2 Performance

The performance of the various trained models in predicting malware in actual network

traffic is shown in Table 12.. In training, Naive Bayes had the fastest time followed by

Random Forest. DNN had a training time double that of the Random Forest classifier,

while SVM was the slowest. On the other hand, Random Forest was the fastest classifier

in prediction and SVM was the slowest. The DNN was not as fast as Random Forest and

Naive Bayes.

TABLE 12.: Training and testing times.

Classifier Training Time (s) Prediction Time (s)

Naive Bayes 5.12 21.75

Random Forest 637.2 2.93

SVM 2648.2 510.43

DNN 1240 40.41

6.2.2.3 Normal Traffic

One important aspect of building an IDS is to reduce the false positives as much as

possible. We tested four classifiers against normal traffic that does not exist in our dataset.

Based on the results of the experiment, the DNN classifier did not flag the normal traffic as

suspicious, whereas the other classifiers flagged some of it as suspicious. The results obtained

from the different classifiers are listed in Table 13..



56

TABLE 13.: Predicted malware given a normal traffic sample

Classifier Percentage of Packets

DNN 0.999 Normal

Random Forest
0.943 Normal

0.056 CitadelPacked

SVM
0.784 normal small

0.208 Ramnit

Naive Bayes

0.354 normal

0.316 Ramnit

0.145 OSX Dockster

0.056 Tbot

When evaluating the results of the accuracy, performance, and normal traffic evaluations,

the DNN emerges as the best classifier across the board. Analyzing the classification com-

parison, the DNN scores best since it had the highest accuracy while maintaining relatively

good training and testing times. On the other hand, the second-best result is Random Forest

in comparison to the Naive Bayes and SVM classifiers. Therefore, the DNN is preferable in

building the IDS, which requires heuristic analysis.

6.3 SUMMARY

The developed IDS operates with a novel approach in traffic analysis. It does not try to

analyze the individual packets, instead, it extracts the secondary data features which contain

a large amount of data about the overall network state. The IDS extracts 90 features from

captured network traffic. The usage of the DNN allows for the detection of malware which

is not present in the training dataset. The performance of a dual DNN system is higher in

comparison to a single DNN due to the first DNN’s filtration. Therefore, the second DNN

needs to process much less data. Such an approach allows us to build a IDS with very low

CPU usage. New samples of normal and malware traffic can easily be used to tune and

retrain the DNN. This approach yields a flexible, accurate, and reliable intrusion detection

system. Furthermore, it will be able to detect new malware not present in the training

dataset and will reduce false positives detected in normal traffic.
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CHAPTER 7

BENCHMARKING DIMENSIONALITY REDUCTION

METHODS FOR MALWARE CLASSIFICATION BASED ON

NETWORK BEHAVIOR

Malware classification based on network behavior is an important step in the analysis for

malware detection. The efficiency of this step is crucial for better performance of the IDS. As

we have seen in Chapter 6, the deep neural network (DNN) was the best option in terms of

accuracy, but not in terms of performance. We propose two ways of increasing performance

by reducing the dimensionality of the datasets and selecting the optimal features.

7.1 ARCHITECTURE

The test system performs feature extraction to create a pre-processing dataset. The

dataset features are compressed using several feature reduction methods and then fed into

a DNN classifier. The system’s three main parts, a network tool to capture network traffic

and extract data, feature extraction method, and a DNN classifier, are shown in Figure 16.

and discussed in more detail below.

In our experiment, feature vectors are first reduced from 90 to 45 features. Once reduced,

the features are compressed to between 10 and 40 features to determine which compression

method works best. This allows the DNN classifier to process features faster and with less

memory consumption. We compare four compression methods to determine the best method

to increase performance without compromising accuracy.

7.1.1 PCAP ANALYZER AND FEATURE EXTRACTOR

As described in Chapter 6, we extract the features from the PCAP files using tcptrace [89],

which can extract information from network capture files, such as port number, total packets,

throughput, etc. In our experiment, the CSV dataset had 90 features extracted from tcptrace.

These features were reduced to 45 based on Shannon’s entropy; features with the lowest

entropy were removed. In addition, features which do not influence the output of the DNN,

such as timestamps or IP addresses, were moved to the end of the feature importance list
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PCA

Fig. 16.: General architecture of the system.

such that they were removed first because these features will change in each attack. A

detailed program output is written to a CSV file from tcptrace. In our case, the CSV file

data is shown with one row for each TCP flow in the PCAP and 45 features per flow. The

45 features are shown in Table 14..
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TABLE 14.: The 45 features selected based on Shannon’s entropy.

Idx Entropy Description Idx Entropy Description

0 11.001 conn # 22 2.058 unique bytes sent b2a

5 10.995 first packet 73 2.037 ttl stream length a2b

6 10.975 last packet 59 2.028 avg segm size a2b

83 8.967 idletime max a2b 61 2.022 max win adv a2b

3 8.269 port a 60 2.016 avg segm size b2a

2 7.703 host b 69 1.996 initial window bytes a2b

4 3.802 port b 57 1.989 min segm size a2b

1 3.615 host a 64 1.981 min win adv b2a

84 2.768 idletime max b2a 62 1.978 max win adv b2a

7 2.492 total packets a2b 11 1.974 ack pkts sent a2b

67 2.433 avg win adv a2b 55 1.973 max segm size a2b

63 2.336 min win adv a2b 58 1.959 min segm size b2a

29 2.326 rexmt data bytes a2b 13 1.951 pure acks sent a2b

27 2.287 rexmt data pkts a2b 56 1.947 max segm size b2a

88 2.178 throughput b2a 70 1.947 initial window bytes b2a

85 2.171 hardware dups a2b 53 1.884 mss requested a2b

87 2.162 throughput a2b 74 1.876 ttl stream length b2a

68 2.141 avg win adv b2a 14 1.871 pure acks sent b2a

12 2.139 ack pkts sent b2a 24 1.842 actual data pkts b2a

8 2.133 total packets b2a 82 1.839 data xmit time b2a

25 2.074 actual data bytes a2b 38 1.819 pushed data pkts b2a

26 2.068 actual data bytes b2a 23 1.807 actual data pkts a2b

21 2.067 unique bytes sent a2b
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7.2 IMPLEMENTATION AND EXPERIMENTAL RESULTS

7.2.1 DATASET

The CTU-13 dataset is based on a large collection [13] created by the Czech Technical

University in 2011. It is a large capture of real botnet traffic such as Neris, Rbot, Virur,

Menti, and Sogou, mixed with other normal and background traffic. Overall, the CTU-13

dataset consists in 13 captures of different botnet samples and each scenarios was executed

with a specific malware, which used several protocols, and performed different actions. The

total size of this dataset is 1.9GB.

As a proof of concept, we will be using only eight PCAP files from the CTU-13 dataset.

The capture files were truncated such that only malware traffic is present in the PCAP files.

One quarter of the dataset was used for training. In each scenario we executed a specific

malware, which used several protocols and performed different actions.

7.2.2 PROCEDURE

All of the prepared files are processed with tcptrace and given probable malware names.

Next, all CSV files are processed with one of the above-mentioned feature reduction algo-

rithms, then, reduced from 45 to 40, 30, 20, and 10 features using four different compression

algorithms. The DNN classifier is trained on this data for 50 epochs. Finally, the data is fed

into a fully connected DNN classifier, which assigned each test sample to one of the malware

in the dataset. The accuracy and training/compression time for all the datasets for the 50

fitting epochs was then measured.

7.2.3 DNN ARCHITECTURE

The classifier was built based on the multilayer perceptron classifier architecture [93].

As we can see in Table 15., the number of hidden units in each layer vary on the input

data dimensionality (number of features). Activation of the output layer was chosen to

be the Softmax function, which outputs the probability of the input belonging to each of

the classes [44]. The model was trained for 50 epochs by the Adam optimizer with default

parameters as it is specified in the original paper of Kingma et al. [68].
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TABLE 15.: DNN architecture.

Layer Number of units Activation

Fully-connected dim*2 Relu

Fully-connected dim*3 Relu

Fully-connected dim*3 Relu

Fully-connected dim*2 Relu

Fully-connected dim Softmax

7.2.4 RESULTS

We conducted a comparison between no compression and four dimensionality reduction

techniques: autoencoder, PCA, SVD, and t-SNE.

7.2.4.1 Accuracy

The obtained accuracy is shown in Table 16. and Fig. 17.. Fig. 17. shows that the SVD

and PCA methods are the most accurate, with PCA being slightly more accurate than SVD

when we reduce the dimensionality even more. Both methods are slightly more accurate

than no compression when the feature dimensionality is 40. Finally, t-SNE has the worst

accuracy across all compression efforts. Note that t-SNE appears to fluctuate in accuracy. It

is by definition a stochastic algorithm which tries to compress the data as much as possible,

but without any guarantees. Stochastic methods are a kind of lottery, so once in a while

t-SNE will compress well and return somewhat accurate results, while other times it will not

be so accurate.

TABLE 16.: Accuracy at various dimensionality.

Compression Dimensionality

Method 40 - 30 - 20 - 10

Original 0.9963 (45 Dim)

SVD 0.9975 0.9960 0.9946 0.9939

PCA 0.9973 0.9972 0.9971 0.9966

Autoencoder 0.9041 0.9037 0.8998 0.8679

t-SNE 0.6105 0.6569 0.5965 0.6705
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Fig. 17.: Comparison of accuracy over various dimensionality.

However, in this experiment t-SNE is shown to always be less accurate than the other

methods because of an almost complete overlap of signatures, as shown in Fig. 18.. As a

result, t-SNE with compressed data showed worse classification accuracy than all others.

Reducing dimensionality with the DNN Autoencoder is less efficient compared to the SVD

and PCA methods, and it is likely that some data features are lost, resulting in lower

accuracy.
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Fig. 18.: t-SNE: The data was compressed into two dimensions and visualized using different

colors to show points from different datasets. However, t-SNE ultimately did not distinguish

between the various malware signatures, and we see nearly a complete overlap on the graph.

7.2.4.2 Performance

In terms of performance, SVD and Autoencoder perform better than with no compression,

especially as the dimensionality is reduced. SVD was the best in terms of performance

by almost 45% compared to no compression at 10 dimensionality. PCA was 50% slower

compared to no compression. However, t-SNE performs many times slower than all of the

other methods combined. The processing time for t-SNE is about 2 hours for the whole

dataset, while all other methods require less than two minutes as seen in Table 17.. In

Fig. 19. we show that this takes about half a minute to complete the classification (training

and compression) time.
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TABLE 17.: Performance (runtime in seconds) at various dimensionality

Compression Dimensionality

Method 40 - 30 - 20 - 10

Original 43.6s (45 Dim)

SVD 41.8 33.5 26.8 19.6

PCA 109.8 107.2 103.4 92.7

Autoencoder 42.5 34.0 27.6 21.2

t-SNE 5,126.4 2,825.2 1,857.1 4,785.0
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Fig. 19.: Comparison of performance over various dimensionality.

By using these compression methods, we were able to increase performance while main-

taining high accuracy over a relatively short computational time. We achieved a 99.3%

classification accuracy through SVD compression and gain about 45% of performance in-

crease over no feature reduction.

7.3 SUMMARY

We introduced a comparison analysis between different feature reduction methods through
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compression for DNNs to classify malware based on network behavior. In the results, SVD

performed better than other techniques as it maintains high accuracy and better perfor-

mance. In our comparisons, t-SNE performed the worst for DNN classifying of malware

signatures.
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CHAPTER 8

FEATURE SELECTION TOOLS

8.1 INTRODUCTION

Building an intrusion detection system based on network behavior consumes a lot of

system resources. The Deep Neural Network (DNN) classifier requires more resources in

comparison to other machine learning classifiers. Our proposal is to increase performance

of the DNN classifier by reducing the number of features required for the classification of

malware based on network behavior. Using more features can incur significant overhead in

training and testing. Furthermore, the more features we have will largely affect resource

consumption and detection stability. Therefore it is necessary to reduce the number of

features by eliminating features with low importance, without compromising accuracy.

Although the set of features can be large, only a few features are important for detection.

Therefore, the elimination of redundant non-contributing features is essential to reducing

the dataset size. Moreover, effective feature selection and data reduction are important in

order to decrease the training duration and to improve the detection rate. Thus, a good

feature selection approach minimizes the information redundancy, computation complexity,

while maintaining accuracy and detection rates.

There are two main feature selection techniques: Filter and Wrapper techniques [40].

In the filter technique, selection of important features and elimination of other features are

based on some predefined criteria, while the wrapper technique evaluates features based

on a training dataset. This work proposes two new feature selection techniques: accuracy

estimation and scoring.

8.2 PROPOSED APPROACH

We propose two novel feature selection algorithms: the accuracy estimation algorithm

and the scoring algorithm. The accuracy estimation algorithm uses Shannon entropy for

the estimation of feature importance. The features are then sorted by importance. The

second algorithm consist of two parts, scoring and correlation. The scoring algorithm utilizes

Shannon entropy, informational gain, and linear independence (expressed as residual sum of
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squares) for feature scoring with further cross-correlation-based filtering. Utilizing the three

statistical features which are used for scoring and the additional filtering by means of cross-

correlation allows the selection of the optimal features that bear most of the information in

the dataset. The proposed methods work with any kind of Machine Learning (ML) classifier

and can be directly applied.

The CTU-13 [19] dataset was used for the classification. The data features were extracted

using the tcptrace utility [89] which takes a PCAP file as an input, extracts 90 features,

and saves the output as a CSV file. Normalization of the CSV data is required to convert

string values into numbers and to scale the data. We normalized the data to zero mean and

unit variance and used this data as input to the DNN classifier, described in Chapter 5.

8.2.1 ACCURACY ESTIMATION ALGORITHM

We propose the accuracy estimation algorithm described in Algorithm 2 to estimate the

influence of a specific feature on the accuracy of the classification.

Algorithm 2: Algorithm for estimation of real influence of specific features on

classification accuracy.

Define feature list containing feature names from dataset

repeat

foreach feature in feature list do

Delete feature from dataset

Train DNN classifier on modified dataset

Evaluate classification accuracy

Store accuracy

Restore feature

end

Delete feature with minimal accuracy change

until dataset dimensionality > 0

We remove one feature, train the classifier, measure the accuracy of the entire system,

store this value, restore the deleted feature and select another feature to be deleted. We

continue the process until all features have been processed. We do this to measure the effect

of feature removal on the overall classification accuracy.

We used Shannon entropy to provide weights for each feature indicating its importance

in the dataset. Shannon entropy characterizes the overall amount of information that is
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contained in a given datavector. The vector consists of values between 0 and 1 indicating

how much information is present. Zero indicates no information is present and 1 indicates

information is present. Other values in different ratios indicate entropy is high, meaning it

may contain lots of information (or just noise). Shannon entropy is defined as

H = −
n∑

i=1

pi ∗ log2(pi) (2)

where pi is the probability of the specific value i.

For the initial estimation of feature importance, the entropies of all features were calcu-

lated. The feature key table and entropy values are shown in Table 18.. In order to determine

which feature to be remove, we compare the entropy values and remove the features with

the least entropy value.

TABLE 18.: Feature codes and entropies.

Feature 
index

Feature name Entropy Feature 
index

Feature name Entropy Feature 
index

Feature name Entropy

0 conn_# 11 30 rexmt_data_bytes_b2a 1.67 60 avg_segm_size_b2a 2.02
1 host_a 3.61 31 zwnd_probe_pkts_a2b 1.03 61 max_win_adv_a2b 2.02
2 host_b 7.7 32 zwnd_probe_pkts_b2a 0.5 62 max_win_adv_b2a 1.98

3 port_a 8.27 33 zwnd_probe_bytes_a2b 1.03 63 min_win_adv_a2b 2.34
4 port_b 3.8 34 zwnd_probe_bytes_b2a 0 64 min_win_adv_b2a 1.98

5 first_packet 10.99 35 outoforder_pkts_a2b 0.05 65 zero_win_adv_a2b 1.47
6 last_packet 10.97 36 outoforder_pkts_b2a 1.47 66 zero_win_adv_b2a 1.29

7 total_packets_a2b 2.49 37 pushed_data_pkts_a2b 1.79 67 avg_win_adv_a2b 2.43
8 total_packets_b2a 2.13 38 pushed_data_pkts_b2a 1.82 68 avg_win_adv_b2a 2.14

9 resets_sent_a2b 1.79 39 SYN/FIN_pkts_sent_a2b 0 69 initial_window_bytes_a2b 2
10 resets_sent_b2a 1.79 40 SYN/FIN_pkts_sent_b2a 0 70 initial_window_bytes_b2a 1.95

11 ack_pkts_sent_a2b 1.97 41 req_1323_ws/ts_a2b 0 71 initial_window_pkts_a2b 1.74
12 ack_pkts_sent_b2a 2.14 42 req_1323_ws/ts_b2a 0 72 initial_window_pkts_b2a 1.75

13 pure_acks_sent_a2b 1.95 43 adv_wind_scale_a2b 0.64 73 ttl_stream_length_a2b 2.04
14 pure_acks_sent_b2a 1.87 44 adv_wind_scale_b2a 0 74 ttl_stream_length_b2a 1.88

15 sack_pkts_sent_a2b 1.48 45 req_sack_a2b 0 75 missed_data_a2b 1.11
16 sack_pkts_sent_b2a 1.24 46 req_sack_b2a 0 76 missed_data_b2a 0.57

17 dsack_pkts_sent_a2b 0.62 47 sacks_sent_a2b 1.48 77 truncated_data_a2b 0
18 dsack_pkts_sent_b2a 1.05 48 sacks_sent_b2a 1.24 78 truncated_data_b2a 0

19 max_sack_blks/ack_a2b 1.48 49 urgent_data_pkts_a2b 0 79 truncated_packets_a2b 0
20 max_sack_blks/ack_b2a 1.24 50 urgent_data_pkts_b2a 0 80 truncated_packets_b2a 0

21 unique_bytes_sent_a2b 2.07 51 urgent_data_bytes_a2b 0 81 data_xmit_time_a2b 1.8
22 unique_bytes_sent_b2a 2.06 52 urgent_data_bytes_b2a 0 82 data_xmit_time_b2a 1.84

23 actual_data_pkts_a2b 1.81 53 mss_requested_a2b 1.88 83 idletime_max_a2b 8.97
24 actual_data_pkts_b2a 1.84 54 mss_requested_b2a 1.79 84 idletime_max_b2a 2.77
25 actual_data_bytes_a2b 2.07 55 max_segm_size_a2b 1.97 85 hardware_dups_a2b 2.17

26 actual_data_bytes_b2a 2.07 56 max_segm_size_b2a 1.95 86 hardware_dups_b2a 1.59
27 rexmt_data_pkts_a2b 2.29 57 min_segm_size_a2b 1.99 87 throughput_a2b 2.16

28 rexmt_data_pkts_b2a 1.6 58 min_segm_size_b2a 1.96 88 throughput_b2a 2.18
29 rexmt_data_bytes_a2b 2.33 59 avg_segm_size_a2b 2.03 89 Unnamed 0

�1
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TABLE 19.: Feature importance order.

Feature deleted Accuracy Δ accuracy Feature deleted Accuracy Δ accuracy

84 0.9978 38 0.9886 0.0018

12 0.9967 0.0010 3 0.9869 0.0017

62 0.9974 -0.0006 61 0.9888 -0.0019

60 0.9971 0.0003 26 0.9861 0.0027

74 0.9962 0.0009 58 0.9851 0.0010

53 0.9955 0.0007 2 0.9819 0.0033

87 0.9955 0.0000 13 0.9845 -0.0027

11 0.9966 -0.0012 59 0.9781 0.0065

6 0.9950 0.0016 8 0.9745 0.0036

14 0.9949 0.0001 57 0.9776 -0.0031

55 0.9943 0.0006 68 0.9711 0.0064

69 0.9940 0.0003 25 0.9426 0.0285

4 0.9945 -0.0006 5 0.9336 0.0090

24 0.9936 0.0010 67 0.9211 0.0124

27 0.9935 0.0001 63 0.8924 0.0288

88 0.9934 0.0001 7 0.8835 0.0088

85 0.9932 0.0001 23 0.8613 0.0222

81 0.9930 0.0003 64 0.8147 0.0467

56 0.9931 -0.0001 82 0.7269 0.0878

70 0.9919 0.0012 21 0.6449 0.0820

1 0.9913 0.0006 83 0.5468 0.0981

22 0.9904 0.0008

�1

From Table 18. it can be seen that some of the features have zero entropy, these features

will be removed because they have little or no impact on the accuracy of malware classifica-

tion and detection. Features with higher entropy are the features that are selected because

they may have an impact on the accuracy. We exclude the timestamp (first packet, feature

5) feature because it does not have an impact on accuracy because the timestamp changes

from one PCAP file to another. Afterwards, a series of training cycles were performed, where

we deleted one feature with minimal entropy on every cycle.

The DNN classifier was trained for 50 epochs to make analysis time reasonable. The

process continues until all the features are sorted in the order of highest to lowest importance.

The results are tabulated in Table 19.. The influence of each feature was estimated as a

difference in accuracy before and after feature deletion.

We arranged the features in order from highest to lowest entropy and then removed 17

features, listed in Table 20., that had 0 entropy. Figure 20. shows the accuracy as features

are removed in increasing order of entropy. Note that the maximum dimensionality is 73

because of the 17 that were removed. Table 22. shows the 14 features that had the most
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effect on accuracy.

TABLE 20.: 17 features with zero entropy.

Feature Number Feature Name

34 zwnd-probe-bytes-b2a

39 SYN/FIN-pkts-sent-a2b

40 SYN/FIN-pkts-sent-b2a

41 req-1323-ws/ts-a2b

42 req-1323-ws/ts-b2a

44 adv-wind-scale-b2a

45 req-sack-a2b

46 req-sack-b2a

49 urgent-data-pkts-a2b

50 urgent-data-pkts-b2a

51 urgent-data-bytes-a2b

52 urgent-data-bytes-b2a

77 truncated-data-a2b

78 truncated-data-b2a

79 truncated-packets-a2b

80 truncated-packets-b2a

89 Unnamed

Figure 20. shows the accuracy as more features (in increasing order of entropy) are

removed. The 14 features, as shown in Table 22., were selected and have better performance

without compromising accuracy.

Figure 21. shows the change in accuracy as features are removed. For example, if we

have three features named 1, 2, 3 and the initial accuracy is 95%, and then remove feature

1 and the accuracy is 94.6%, then the delta when removing feature 1 is 0.4%. If we then

remove feature 2 (so both features 1 and 2 are removed) and obtain an accuracy of 94.9%,

then the delta is -0.3%, demonstrating that we can have negative values in Figure 21.. The

change of accuracy as features are removed is shown in Figure 21..
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Fig. 20.: The accuracy of the training model based on removing the features with the lowest

entropies.

Fig. 21.: Change of delta accuracy when removing features

8.2.2 THE SCORING ALGORITHM
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Although the accuracy of the estimation algorithm demonstrates the real influences of

features, it takes a long time to process larger datasets. Therefore we propose an automated

score based algorithm.

Algorithm 3: Scoring algorithm

var scores[n features]

foreach column in data do

if linear nonslimilarity < threshold then

score=0

else
score = entropy(column)*Kentr+ linear nonsimilarity(column, data)*Klin+

informational gain(column,data)*Kinfgain

scores.push(score)

end

end

scored data = data[where score > score percentile(scores)]

var corellations ;

foreach column1, column2 in combinations(data) do

corellations.push(correlate(column1,column2));

end

filtered data = scored data[where correlation < corr percentile(correlations)];

The algorithm consists of two parts: scoring and correlation. Increasing performance

without compromising high accuracy is important. Removing some of the features that are

not important will allow us to improve performance without compromising accuracy. We use

scoring to measure the importance of each feature and assign a value of importance marking

the feature with either high or low importance. The features that are high importance have

a large affect on the accuracy if removed, whereas the features with low importance have a

minimal impact to the accuracy. Three measures of data are used to score and delete the

least important features.

The first measure is Shannon entropy. The second measure is informational gain, which

characterizes the amount of information added to the system by a given data vector and is

defined as the following:
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Fig. 22.: The scoring algorithm.

G(~v, A) = H(~v)−H(~v|A)

where H(~v) is the Shannon entropy of a given data vector ~v and H(~v|A) is the conditional

entropy of ~v with respect to the data matrix A [82].

The third measure is linear nonsimilarity, which describes how one feature is dependent

on other features. By definition, the vector ~a is linearly dependent on vectors ~b1 ~, b2, ~bn when

there exists a nontrivial solution of an equation
∑
βi~bi = ~a [95]. This can be rewritten in

the form of a matrix equation, namely B~β = ~a, where B is a matrix composed from vectors

~b1 ~, b2, ~bn. By finding the inverse B−1 the linear dependence coefficients could be found from

equation ~β = B−1~a. As inverse matrices are defined only for square matrices, Moore–Penrose

pseudoinverse can be used. In that manner, the error of linear combination can be estimated

as
∑

(B~β−~a)2, which is used as a measure for linear nonsimilarity in that case. If the vector

can be expressed as a linear combination of the existing (error is close to zero), it is removed.

All three values (B, ~β,~a) characterize information contained in vector ~a, which are summed

up (with coefficients to have similar ranges) to get the score, and only features with the high-

est score are selected. The final score is adding the three measures (entropy, information

gain, and linear nonsimilarity).
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Scoring will result in features that have low entropy, low informational gain, and low

linear independence being assigned a near zero score. If the feature has a high entropy, low

informational gain, and low linear independence, the score will be low. In cases where there

is high entropy, high informational gain, and high linear independence, the feature will get

a maximal score.

In the second step we use cross-correlation to remove the features with the lowest impor-

tance as calculated in the first step. Cross-correlation is basically a dotwise multiplication

with further addition. If the data is similar, this operation will lead to large numbers. If

not, it will lead to small numbers. From the high scored data, selected in the previous step,

the features with the highest cross-correlation are deleted.

The cross-correlation between possible pairs of vectors is calculated from the definition

[110]

C(~a,~b)[k] =
n∑

n=0

a∗nvn+k

Displacement k is selected to be zero as vectors are not temporal series in that case but

independent data sequences. The pairs of data-vectors with a cross-correlation higher than

the defined percentile are found and filtered, forming the final truncated dataset.

For a given implementation, constants Kentr, Klin and Kinfgain were selected to be 100, 0.1

and 100 respectively to meet the ranges of each other. The threshold for linear nonsimilarity

was selected to be equal to 0.01.

The scoring percentile determines the minimum score under which data-vectors are re-

moved. The correlation percentile determines the maximum cross-correlation each pair could

have, one vector of the pair with the higher correlation is removed. A percentile of 80 means

that we will take only 20 percent of the highest scoring features, thereby removing 80 per-

cent of the total features. To examine the general behavior of the feature selection algorithm

together with influences of both parameters, two sets of experiments were conducted. In the

first step, the features were selected from the 90 feature dataset varying one of the parame-

ters in each set. In the second step the DNN classifier was trained on the obtained reduced

dataset and results were analyzed.

The above-mentioned 90 feature dataset generated from the CTU-13 dataset was pro-

cessed with the suggested algorithm. The algorithm were adjusted based on the scoring and

correlation percentiles.

The loss is calculated on training and its interperation is how well the model is doing

for these two sets. Unlike accuracy, loss is not a percentage, it is a summation of the errors

made.



75

8.3 ALTERNATIVE FEATURE SELECTION TOOLS

This section provides an overview of alternative feature selection tools, including using a

decision tree, correlation, the Adaboost classifier, ICAP, and mutual information.

8.3.1 DECISION TREE (RANDOM FOREST)

Sugumaran et al. [101] and Fleuret [55] have suggested the use of decision tree classifiers

for evaluation of feature importance. For comparison, this experiment was conducted using

the Extremely Randomized Forest algorithm. The implementation from Scikit-Learn library

[90], namely ExtraTreesClassifier was used. The decision tree forest was built on the same

CTU-13 dataset and was used for feature importance evaluation. The value of the obtained

feature importance from highest to lowest for our 90 features is shown in Figure 23..

Fig. 23.: Obtained importances distribution.

8.3.2 FAST CORRELATION BASED FILTER
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Fast Correlation Based Filter (FCBF) is a statistical measure describing the association

between random variables and quantifies how they are dependent on each other. In general a

feature is good if it is relevant to the class but not redundant to any other relevant features.

In another words, if the correlation between a feature and the class is high enough to make

it relevant to the class and the correlation between it and any other relevant features does

not reach a level so that it can be predicted by any of the other relevant features, it will be

regarded as a good feature [115]. The Fast Correlation Based Filter algorithm from Yu and

Liu [115] was used for feature selection in our case.

8.3.3 ADABOOST CLASSIFIER

The AdaBoost algorithm was suggested to estimate feature importance by Fleuret [55]

and Wang [108]. One of the main ideas of the AdaBoost algorithm is to maintain a dis-

tribution or set of weights over the training set. The AdaBoost algorithm creates a set of

poor learners by maintaining a collection of weights over the training data and adjusts these

weights after each weak learning cycle adaptively. In our case the implementation of the

AdaBoost Classifier from Scikit-Learn library was used, which is based on ideas from the

work of Zou et al. [62]. Firstly, the DNN classifier was trained on the whole dataset, and

feature importances were extracted directly from the classifier model. Only nine of them

were classified as important, so the number of features was less than in our case (12).

8.3.4 ICAP

Interaction Capping (ICAP) is a supervised feature selection algorithm developed by

Aleks Jakulin. It was successfully used by different researchers in the world, showing rela-

tively good results in comparison with other similar algorithms [77]. The implementation

from scikit-feature, Python library for feature selection was used [73].

8.3.5 MUTUAL INFORMATION

Mutual Information Feature Selection (MIFS), proposed by Battini [37], uses a measure

of importance. Mutual information is the change of uncertainty in the classification problem

after the addition of a new feature vector to the dataset [37] and is defined as:

I(C,F ) = H(C)−H(C|F ) (3)

where I stands for mutual information, H(C) for classification uncertainty measured as

entropy of class probabilities, while H(C|F ) represents conditional entropy, i.e. classification
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TABLE 21.: Selected features for alternative tools.

Correlation AdaBoost ICAP MIFS Acc Est Scoring

36 31 83 83 7 0

65 75 58 36 8 1

86 15 3 18 21 2

28 30 10 34 23 3

20 47 86 39 25 4

16 17 56 40 59 10

48 76 29 41 63 65

9 19 60 42 64 83

74 36 43 44 67 84

53 – 59 45 68 –

18 – 15 46 82 –

43 – 47 49 83 –

uncertainty after addition of feature F . Here, the implementation of MIFS from Li et al. [73]

was used.

8.4 RESULTS

8.4.1 SELECTED FEATURES FOR ALTERNATIVE TOOLS

Each feature selection tool was configured to select 12 features with the exception of

Adaboost which automatically selected 9 features. Random Forest and Adaboost provided

an importance value for each feature.

We the trained the DNN classifier with those features and measured accuracy. The results

are shown in Table 21.. The maximum accuracy obtained in the DNN Classifier was 99.83%.



78

8.4.2 ACCURACY ESTIMATION ALGORITHM

To investigate the entropy-importance connection in more detail, the change in accuracy

was visualized together with the entropy of a specific feature in Figure 24..

It shows that entropy can be used for initial feature selection but with some precautions.

For example, the highest entropy observed in the dataset contained the timestamp and

IP address features of both communicating sides, which definitely should not influence the

classification.

We used informational entropy to determine feature importance estimation.

Fig. 24.: Delta accuracy for different features.

In our experiment the most important features are presented in Table 22..
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TABLE 22.: The most important features obtained through experimentation.

Feature # Name Comments

2 host_b IP address of B
59 avg_segm_size_a2b Average size of segment from A to B
8 total_packets_b2a Total number of packets in stream from B to A
68 avg_win_adv_b2a The average window advertisement seen from B to A
25 actual_data_bytes_a2b The number of actual data sent from A to B
5 first_packet Timestamp of first packet receiving
67 avg_win_adv_a2b The average window advertisement seen from A to B
63 min_win_adv_a2b The minimal window advertisement seen from A to B
7 total_packets_a2b Total number of packets send from A to B
23 actual_data_pkts_a2b The count of all the packets with at least a byte of TCP data payload.
64 min_win_adv_b2a The minimal window advertisement seen from B to A
82 data_xmit_time_b2a Total data transmit time from B to A
21 unique_bytes_sent_a2b The number of unique bytes sent from A to B
83 idletime_max_a2b Maximum idle time between consecutive packets

�1

Most of the high importance data are statistics from network streams, which changes for

different malware types. Two of them (2 and 5), which are the IP address and timestamp,

are misclassified as important, because the IP address and the timestamp will differ from

one attack to another. Finally, we increased training iterations to 200 and obtained 99.83%

accuracy.

8.4.3 THE SCORING ALGORITHM

The scoring algorithm demonstrated high classification accuracy with a minimal number

of features. The algorithm was able to find the set of five data features, which lead to

accuracy as high as 99.86%. Any further reduction of features led to a noticeable decrease

of accuracy. Stronger data filtering in the scoring step (increase of scoring percentile) was

found to be more advantageous over stronger filtering in the correlation step (decrease of

correlation percentile) for a given dataset. Generally, the algorithm provided an eighteen-

fold decrease, reducing the features from 90 to 5, keeping the accuracy to be close to one.

A significant feature reduction lead to decrease of the DNN classifier size and consequently

considerably influences the performance of the training time.

Overall, only five similar features were selected by these different methods as it is shown

in Table 23. with the last row containing accuracy achieved on that subset. RandomForest
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and AdaBoost gave similar results, being similar tree-based methods. Fast Correlation Based

Filter (FCBF) and our Accuracy Estimation algorithm (aliased as Acc Est) both gave quite

different results with different features selected as important ones. The Scoring algorithm

(aliased as Scoring) found features having similarities to almost all other selectors, probably

due to its internal utilization of few statistical measures. As ICAP and MIFS uses very

different approaches, their result differ strongly from other selectors. Although all of these

approaches share five features and similar classification accuracy was achieved, being more

than 99.5%, MIFS only achieved about 95% accuracy.

TABLE 23.: Accuracies of the feature selection tools.

Name Accuracy

Accuracy Estimation 99.83

Scoring 99.81

ICAP 99.77

Randomforest 99.71

Adaboost 99.65

FCBF 99.65

MIFS 94.74

Another interesting set of statistics which can be extracted from the conducted experi-

ments is selected features overlap. The number of feature observations in the results from

all of the selectors were counted and are presented in Table 24.. Features which occur less

than two times were not included in the table.
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TABLE 24.: Feature overlap from the 7 selection algorithms.

Feature Number Feature Name Count

36 outoforder-pkts-b2a 4

83 idletime-max-a2b 4

15 sack-pkts-sent-a2b 3

47 sacks-sent-a2b 3

65 zero-win-adv-a2b 3

10 resets-sent-b2a 2

17 dsack-pkts-sent-a2b 2

18 dsack-pkts-sent-b2a 2

19 max-sack-blks/ack-a2b 2

30 rexmt-data-bytes-b2a 2

31 zwnd-probe-pkts-a2b 2

43 adv-wind-scale-a2b 2

59 avg-segm-size-a2b 2

75 min-segm-size-a2b 2

82 data-xmit-time-b2a 2

84 idletime-max-b2a 2

86 hardware-dups-b2a 2

8.4.4 PERFORMANCE ANALYSIS

We compared the scoring and accuracy estimating algorithms to five other feature selec-

tion tools. As shown in Table 25. the accuracy prediction algorithm is the most accurate,

but it was the slowest because it requires removing one feature at a time and measuring the

accuracy to find the importance of each feature. This is done for each of the 90 features.

Random Forest was the fastest tool, however accuracy was lower compared to our proposed

algorithms. The scoring algorithm and Adaboost both selected only nine features requiring

less processing time for classification. Although Adaboost was faster, the scoring algorithm

achieved higher accuracy.
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TABLE 25.: Performance of feature selection tools.

Name Time(s)

Randomforest 5.60

Adaboost 23.75

Scoring 112.69

MIFS 134.78

ICAP 143.07

FCBF 172.35

Accuracy Estimation 3932.59

8.4.5 FURTHER COMPARISON

We compared our scoring algorithm to the feature selection algorithm proposed by Yin et

al. [113]. Their algorithm is based on deviation and correlation, they were able to reduce the

KDD99 dataset from 41 to 21 features. The KDD99 dataset was preprocessed by encoding

the categorical features with integers and normalizing the data to the same scale. The

dataset was split into 80% for training and 20% for testing, which were then fed into the

DNN classifier. We selected 3 types of network traffic: normal traffic, Denial of Service

(DoS), and Probe traffic. DoS is an attempt by an attacker to prevent legitimate users from

using a service. Probe traffic is a type of attack where the attacker tries to gain information

about the target host.

Table 26. shows the results of precision, recall, and F1 score using all 41 features.
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TABLE 26.: Original KDD99 dataset with 41 features.

Class Precision Recall F1

DoS 0.9999 1.0000 0.9999

Normal 0.9987 0.9986 0.9986

Probe 0.9914 0.9911 0.9912

We conducted three experiments, the first experiment used Yin et al. selected features

and we obtained an accuracy of 0.9991. The precision, recall, and FL values are shown in

Table 27..

TABLE 27.: Truncated KDD99 dataset with 21 features from Yin et al.

Class Precision Recall F1

DOS 0.9998 0.9997 0.9997

Normal 0.9981 0.9973 0.9977

Probe 0.9868 0.9880 0.9874

The second experiment used our scoring algorithm which reduced the set of features to

18 and obtained the same accuracy of 0.9991. We were able to reduce the number of features

by 7.3% in comparison to to Yin et al. while maintaining the same accuracy. The precision

recall, and F1 values are shown in Table 28.

TABLE 28.: Truncated KDD99 dataset with 18 features using the Scoring algorithm.

Class Precision Recall F1

DOS 0.9998 0.9995 0.9996

Normal 0.9976 0.9978 0.9977

Probe 0.9853 0.9710 0.9781

In the third experiment, we were able to further reduce the number of features to 13
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while achieving an accuracy of 0.9954. We were able to reduce the number of features

by 68.3% which is 19.5% fewer features than the compared feature selection algorithm,

while maintaining almost similar accuracy. Reducing the features by 68.3% increases the

performance of the DNN malware classification. The precision, recall, and F1 values are

shown in Table 29..

TABLE 29.: Truncated KDD99 dataset with 13 features using the Scoring algorithm.

Class Precision Recall F1

DoS 0.9989 0.9993 0.9991

Normal 0.9856 0.9942 0.9899

Probe 0.9224 0.9129 0.9176

8.5 SUMMARY

We proposed two feature selection algorithms utilizing feature reduction without compro-

mising accuracy. The correlation between Shannon entropy and feature importance proves

to be a very straightforward and fast method of feature selection. The first algorithm al-

lowed us to reduce features from 90 to 12, that is 7.5 times fewer features. Furthermore, the

scoring algorithm allowed us to achieve even higher feature reduction without compromising

accuracy, while reducing the features from 90 to 5, that is 18 times fewer features. Both

methods could be used for any machine learning application, especially having quadratic

or higher complexities. The further reduction of features is possible by using some of the

existing feature compression methods such as PCA, SVD, and Autoencoder.
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CHAPTER 9

CONCLUSION

As devices continue to rely more and more upon wireless networks, these connections need

to be secured and protected faster each day. This research proposes three intrusion detection

systems (IDS) using machine learning. The first IDS is able to detect deauthentication

attacks, the second detects worms based on their attack phases and via the use of machine

learning, while the last detects malware in general based on its network behavior. We

evaluate our approach by comparing our results to three different classifiers which were built

using the same dataset in terms of accuracy and performance. We propose two methods

for improving the performance of these IDS, selecting the optimal features and reducing the

features through compression.

1. Deauth attack prevention using one-time password and Deep Neural Net-

work machine learning approach

First, we build an intrusion detection system using machine learning and we propose

two mutually exclusive methodologies to prevent deauthentication DoS attacks for

IEEE 802.11 networks. One mechanism is based on one time password (OTP). The

access point will only accept deauthentication packets having the correct OTP. The

other approach is utilizing machine learning. When the detection tool detects the

invalid deauthentication packet, it sends a packet to the AP and all nodes indicating

they should drop all deauthentication packets for a certain amount of time. This

system allows unmodified clients to still get connected. More importantly, the intrusion

detection system does not require the nodes to be modified. This makes it backward-

compatible and easy to roll out gradually. The Deep Neural Network classifier is shown

to be best for the problem and achieved an accuracy of 99.61%.

For future work, a comparison analysis between other machine learning classifiers is

needed and exploring methods to increase performance.

2. Deep Neural network approach for Worm Traffic Visualization and Analysis

Then, we propose a hybrid worm detection and analysis approach. We trained a DNN

classifier on the network traffic produced by five worms and normal network traffic.
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The average precision of the classifier was 94.1%. We were able to detect a worm

attack, which does not exist in our dataset, that has similar network behavior. The

hybrid system consist of the visualizer tool based on D3 that visualizes network ac-

tivities, identifies worm attack phases, and traces the attack. The proposed network

intrusion detection system provides better insight on worm activities and better detec-

tion of worms that have similar network behavior. In addition, we built a worm traffic

generation tool using ns-3.

For future work, we need to expand the dataset to include more worms and perform a

comparison between other machine learning classifiers and explore methods to increase

performance.

3. NNIDS - Neural network based intrusion detection system

Further, we built an intrusion detection system and a traffic analysis tool that uses 90

features and permits a better accuracy. We use a dual DNN system which is has better

performance than a single DNN when carrying out malware detection. Therefore, an

intrusion detection system with very low CPU usage is developed, which is flexible and

sensitive to malware threats based on their network behavior. We evaluate our method

by comparing four different classification methods using the same dataset in terms of

accuracy and performance.

For future work, we need to expand the dataset to include more malware and select

the optimal features to increase performance.

4. Benchmarking Dimensionality Reduction Methods for Malware Classifica-

tion Based on Network Behavior

Then, we perform a comparison analysis of four feature reduction methods through

compression for DNNs to classify malware based on their network behavior. We show

that SVD performed better than other techniques as it maintains high accuracy and

better performance. In addition, t-SNE performed the worst for DNN classifying of

malware signatures.

For future work, we need to select the optimal features before reducing the features.

5. Feature selection algorithm for the malware classification and detection

based on network behavior

Finally, we propose two novel feature selection algorithms using feature reduction with-

out compromising accuracy. The first algorithm, accuracy estimation, uses Shannon
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entropy to estimate the feature importance The second algorithm, scoring, consists of

two parts, scoring and correlation. The first algorithm reduced the features from 90 to

12, which is 7.5 times fewer features. In addition, the scoring algorithm allowed us to

achieve a higher feature reduction from 90 to 5, which is 18 times fewer features. Both

of these methods can be used for any machine learning application.

For future work, exploring the effects of compressing the data after selecting the optimal

features to see if we can increase the performance even more without compromising

accuracy.
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