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Abstract 

The Internet of Things (IoT) is considered one of the trending technologies today. IoT affects 

various industries, including logistics tracking, healthcare, automotive and smart cities. A rising 

number of cyber-attacks and breaches are rapidly targeting networks equipped with IoT devices. 

This thesis aims to improve security in IoT networks by enhancing anomaly detection using 

machine learning.  

This thesis identified the challenges and gaps related to securing the Internet of Things networks. 

The challenges are network size, the number of devices, the human factor, and the complexity of 

IoT networks. The gaps identified include the lack of research on signature-based intrusion 

detection systems used for anomaly detection, in addition to the lack of modelling input parameters 

required for anomaly detection in IoT networks. Furthermore, there is a lack of comparison of the 

performance of machine learning algorithms on standard and real IoT datasets.  

This thesis creates a dataset to test the anomaly binary classification performance of the Neural 

Networks, Gaussian Naive Bayes, Support Vector Machine, and Decision Trees machine learning 

algorithms and compares their results with the KDDCUP99 dataset. The results show that Support 

Vector Machine and Gaussian Naive Bayes perform lower than the other models on the created 

IoT dataset. This thesis reduces the number of features required by machine learning algorithms 

for anomaly detection in the IoT networks to five features only, which resulted in reduced 

execution time by an average of 58%.  

This thesis tests CNNwGFC, which is an enhanced Convolutional Neural Network model, in 

detecting and classifying anomalies in IoT networks. This model achieves an increase of 15.34% 

in the accuracy for IoT anomaly classification in the UNSW-NB15 compared to the classic 

Convolutional Neural Network. The CNNwGFC multi-classification accuracy (96.24%) is higher 

by 7.16 than the highest from the literature. 
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1. Chapter One: Introduction 

1.1. Background 

This thesis discusses anomaly detection for the Internet of Things (IoT) networks using machine 

learning. This topic includes three key concepts: Anomaly Detection, IoT and Machine Learning. 

Anomaly detection is also known as outlier detection and novelty detection at times. It refers to 

detecting unusual objects, occurrences, or observations that differ considerably from a bulk of data 

and do not correspond to a well-defined typical behaviour [1]. Such occurrences and events may 

raise concerns that they were generated by a different method or seem inconsistent with the other 

data [2]. The concept of anomaly detection has several applications, including the prevention of 

financial fraud and the protection of computer networks from abnormal traffic such as denial of 

service attacks and ping of death. 

 

The Internet of Things (IoT) promises an optimistic technological future where the physical world 

is integrated with computer-based systems, resulting in economic benefits and efficiency 

improvements. The IoT is a network of objects, including devices, home appliances, and vehicles, 

which may be embedded with electronics, sensors, and software to connect and exchange data [3]. 

If a 'thing' is referred to as part of the IoT, it is accessible via the internet. The IoT affects a variety 

of industries, including logistics tracking, healthcare, automotive and smart cities. It is expected 

that the usage of IoT devices will touch every point of human life.  

 

Machine learning is a subfield of the artificial intelligence field. It is defined as a machine's 

capability to predict and make decision like a human. Machine learning is a growing field that uses 

computing algorithms intending to mimic human intelligence through learning from their 

surroundings [4]. It allows software applications to become more accurate at predicting outcomes. 

Bayesian Networks, Support Vector Machines, Neural Networks, and Decision Trees are examples 

of machine learning algorithms. 
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1.2. Motivation 

Despite the indisputable advantages of the IoT, the fact of the matter is that its security is not 

keeping pace. As the IoT becomes more widespread, its heterogeneity and size are projected to 

increase existing Internet security vulnerabilities. A wide variety of threats that we now cannot 

consider will become apparent once humans, sensors and automobiles can easily connect via IoT.  

 

If essential measures are not taken, hackers will exploit the IoT's evasiveness to disrupt 

communications, achieve substantial financial gains, or physically harm people. For instance, 

substantial vulnerabilities are found in many IoT baby monitors [5], which hackers might exploit 

to carry out a variety of illegal acts, such as allowing other users to observe and operate the monitor 

remotely. Another recent discovery has demonstrated that Internet-connected automobiles can be 

remotely controlled [6], enabling the driver to perform things such as open doors and even turn off 

the vehicle's engine while it is in motion. Moreover, there are alarming incidents of IoT hacking 

that may extend to medical equipment and can have a devastating effect on patients [7, 8]. Another 

critical point is that most present security countermeasures are computationally intensive and 

significantly overhead [9]. However, price limits force IoT devices to have restricted memory and 

computing capability and use small, affordable batteries for energy storage.  

 

To prepare for a future in which the IoT is everywhere and accessible from anywhere, it is more 

necessary than ever to address significant IoT security concerns. One of the Internet security 

challenges for IoT devices is anomaly detection. Many negative consequences might result from 

an abnormal attack on today’s highly linked and interconnected network environment. Artificial 

intelligence’s growth has led to machine learning’s use in anomaly detection. 
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1.3. Aim and Objectives 

This study aims to improve security in IoT networks by enhancing existing anomaly detection 

techniques using machine learning. This research will incorporate the following objectives: 

• O1: Identify the challenges and research gaps in securing the Internet of Things networks.  

 

• O2: Test the anomaly binary classification (normal/abnormal) performance of the 

following machine learning algorithm on a real IoT dataset and compare the results with 

the commonly used dataset from the literature (KDDCUP99): Neural Networks (NN), 

Gaussian Naive Bayes (NB), Decision Trees (DT), and Support Vector Machine (SVM). 

 

• O3: Reduce the number of features (input size) required to detect anomalies in IoT 

networks.   

 

• O4: Develop an enhanced deep learning model based on CNN to detect and classify 

anomalies in IoT networks.  
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1.4. Contributions 

Here is a list of the contributions to the literature: 

1. Identified the challenges and the gaps related to securing the Internet of Things 

networks. The challenges are network size, the number of devices, the human factor as well 

the complexity of the IoT networks. The gaps identified include the lack of research on the 

following: 

o Signature-based intrusion detection systems use for anomaly detection. 

o Modelling input parameters required for anomaly detection in IoT networks. 

o Comparison of the performance of machine learning algorithms on the KDDCUP99 

and a real IoT dataset [78].  

o High performance machine learning model to classify anomalies in the IoT 

networks.   

 

2. Tested the binary classification performance including accuracy, precision and F1 Score of 

the Neural Networks, Gaussian Naive Bayes, Support Vector Machine, and Decision Trees 

machine learning algorithms and compared their results with the Knowledge Discovery 

and Data Mining 1999 (KDDCUP99) dataset. The results showed that Support Vector 

Machines and Gaussian Naive Bayes performs lower than the other models. 

 

3. Reduced the number of features required by machine learning algorithms for anomaly 

detection in the IoT networks from 41 to 5 features only, which resulted in reduced 

execution time by an average of 58%. 

 

4. Tested the CNNwGFC, which is an enhanced Convolutional Neural Network model, in 

detecting and classifying anomalies in IoT networks. This model archives an increase of 

9% in the accuracy for IoT anomaly detection in the University of New South Wales-

Network-Based 15 (UNSW-NB15) compared to the classic Convolutional Neural 

Network. The CNNwGFC multi classification accuracy (96.24%) is higher by 7.16 than 

the highest from the literature [195]. 
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1.5. Thesis Outline 

In addition to the Introduction chapter, this thesis includes five other chapters. Here is an overview 

of each chapter:  

• Chapter 2 provides an overview of machine learning algorithms, challenges in securing 

IoT devices, related studies on the use of Machine Learning in anomaly detection, the gap 

in research in anomaly detection for IoT networks and an overview of datasets used in this 

research.  

 

• Chapter 3 tests the binary classification performance of the following Machine Learning 

algorithms in anomaly detection on the KDDCUP99 and created IoT datasets: Neural 

Networks, Gaussian Naive Bayes, Decision Trees, and Support Vector Machine. 

 

• Chapter 4 reduces the input size of the KDDCUP99 dataset to five features only and 

compares the binary classification performance results with Chapter 3. 

 

• Chapter 5 tests the CNNwGFC model, which is an enhanced Convolutional Neural 

Networks model, in detecting and classifying anomalies in network traffic data. 

 

• Chapter 6 includes a summary of the findings of this research. 
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1.6. List of Publications 

The following papers were accepted for publication: 

 

• H. Abdulla, H. Al-Raweshidy and W. S. Awad, “ARP spoofing detection for IoT 

networks using neural networks”, SSRN Electronic Journal, July 24, 2020. 

 

• H. Abdulla, H. Al-Raweshidy and W. Awad, “The Era of Internet of Things: Towards 

better security using machine learning”, in International Conference on IT Innovations 

and Knowledge Discovery 2023, 2023. 

 

• H. Abdulla, H. Al-Raweshidy and W. Awad, “Denial of Service Detection for IoT 

Networks Using Machine Learning”, in International Conference on Agents and 

Artificial Intelligence 2023, 2023. 

 

At the time of writing, the following papers were submitted for review:  

 

• A journal paper titled “CNNwGFC: An Enhanced CNN Model for Network Traffic 

Anomaly Detection and Classification” submitted to IEEE Access on 30th January 2023. 

  



7 

 

2. Chapter Two: Related Work and Concepts 

2.1. Overview 

This chapter aims to identify the gaps related to anomaly detection in IoT networks. First, it details 

the Machine Learning algorithms used in this research, including Artificial Neural Networks, 

Decision Trees, Support Vector Machines, Naïve Bayes and Convolutional Neural Networks. It 

defines two concepts related to the research topic: Intrusion Detection and Time Series. It describes 

the Internet of Things concept and its security challenges. It describes the public data sets used in 

this thesis, including KDDCUP99, UNSW-NB15 and a real IoT dataset [78]. Finally, this chapter 

is concluded with a summary of its contents. 
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2.2. Machine Learning 

2.2.1. Overview of Machine Learning 

Machine learning is a branch of artificial intelligence that enables a computer to learn how to create 

output without being explicitly programmed [10]. Machine learning technology is commonly used 

for data analysis to construct prediction models. The popularity of machine learning stems from 

the fact that it should do two different jobs. First are the tasks that machines can perform, followed 

by those that are impossible for humans to execute. Some academics divide the process of machine 

learning into two parts: learning and prediction. The learning element concerns feeding the 

machine learning algorithm with the training data, while the prediction element concerns 

the machines' predictions. Supervised and unsupervised learning are the two most typical types of 

machine learning. 

• Supervised Learning 

Supervised machine learning is used when a dataset has labelled data. Supervised learning aims to 

train the computer to predict values accurately or classify an input example. Classification and 

regression are the most popular products of supervised learning [11]. 

 

• Unsupervised Learning 

Unsupervised learning aims to describe hidden patterns from input data. Unsupervised learning is 

used when a labelled dataset is not available. Sometimes, unsupervised learning is used to 

categorize unlabelled datasets, and the resulting labelled dataset is used for supervised learning. 

Dimensionality reduction and clustering are two common examples of unsupervised learning [12] 

 

As this research is done on a labelled dataset, it is opted to employ supervised learning for this 

thesis. A model of class label distribution is trained using supervised learning algorithms, and this 

model can predict class labels for testing samples. Figure (2-1) is an example of a process flowchart 

for supervised learning algorithms; this whole procedure is also known as classification, which 
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forms the basis for the created prediction model. It is crucial to choose the appropriate 

classification model for a given task. 

 

Figure 2-1: The process of supervised learning [15]. 
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The supervised learning algorithms include the following categories: Regression and 

Classification, as shown in Figure (2-2). 

 

 

Since the problem targeted in this research is a classification problem (Normal/Abnormal Traffic), 

classification machine learning algorithms are used. According to [14] [15], supervised machine 

learning algorithms, which are mainly used for classification, include: Random Forest (RF), Naive 

Bayes Classifier, Logistic Regression, Linear Classifier, Neural Networks, K-Means Clustering, 

Boosting, Perceptron, Decision Tree, Support Vector Machines, Quadratic Classifiers; Bayesian 

Networks. Among the classification-supervised machine learning algorithms, the following are the 

best suited for anomaly detection according to [16][17]: Neural Networks, Support Vector 

Machines, Naïve Bayes, Decision Trees, and Deep Learning. These algorithms are reviewed in the 

following sub-sections. 

 

 

Figure 2-2: Taxonomy of ML techniques [13]. 
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2.2.2. Artificial Neural Networks  

Artificial Neural Network (ANN) is a supervised machine learning method proposed fifty years 

ago. ANN are a type of machine learning algorithm that mimics the structure and function of the 

human brain. They analyse data by grouping raw input, identifying patterns, and labelling 

information. Since neural networks can only process numerical data, real-world input such as 

images, text, and sounds must be converted into numerical format before being analysed by the 

network [18]. The two main parts of a neural network are: 

• Connections (weights): These are the links between the neurons in a neural network and 

hold values that are adjusted during the training process. 

 

• Neurons (nodes): Neurons receive inputs from other neurons via the connections, which 

have weight values. They multiply them by their corresponding weights and sum them up 

as shown in Equation (2-1). This result is then passed through an activation function, which 

determines whether the neuron "fires" or not. This process is mathematically represented 

in Equation (2-1). The output of this process, Y, is then processed by the activation function 

(2-2). 

 

𝑌 =  ∑(𝑖𝑛𝑝𝑢𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠                             (2-1) 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑌)                                                            (2-2) 

 

Fire means to activate; the word is derived from the brain's fundamental processes. One neuron 

must have an activation function for the binary classification task. The Sigmoid function is an 

example of an activation function. The equation for the sigmoid function is: 

 

f(z) = 1 / (1 + exp(-z))          (2-3) 
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where: 

• f(z) is the output value between 0 and 1, 

• z is the input to the sigmoid function, which can be any real number, 

• exp() is the exponential function, and 

• 1 / (1 + exp(-z)) is the formula that maps z to the range (0, 1). 

Figure (2-3) shows a Sigmoid function graph. 

 

Figure 2-3: Sigmoid Function. 

 

According to [19], a simple neural network or multi-layer perceptron consists of 3 layers as shown 

in Figure (2-4): 

• Input Layer:  It is the first layer and responsible for receiving external data. 

 

• Hidden Layer: It is located between the input layer and output layer to transform the input 

data into output. 

 

• Output Layer: It is the last layer in a neural network to provide the output. 
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Figure 2-4: Example of a Neural Network Diagram. 

 

Using the backpropagation formula, the weights of neurons inside each layer are adjusted [20]. 

Equation (2-3) shows the back-propagation formula: 𝑊 is the change in the edge weight at time 𝑡 

(or 𝑡 − 1 for the previous iteration), alpha is the learning rate, and the gradient is the derivation 

within fraction. 

∆𝑊𝑡 =  𝛼 ∗ 
𝜕𝑀𝑆𝐸

𝜕𝑊𝑡
+  𝜇 ∗ 𝑊𝑡−1                                (2-4) 

 

During training, loss functions are used to calculate the loss between the predicted variable and 

the output, hence assisting in the training of a neural network [19]. The Mean Squared Error (MSE) 

function, seen at Equation (2-4), is a loss function. 𝑦�̂� is the predicted result, and 𝑛 is the number 

of output classes, 𝑦𝑖  is the outcome of the learning process. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦�̂� − 𝑦𝑖)2𝑖=1

𝑛          (2-5) 
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2.2.3. Decision Tree  

A Decision Tree (DT) demonstrates how to make a decision based on a specific attribute collection. 

Figure (2-5) shows that a decision tree has internal decision nodes and terminal leaves. Each 

decision node, y, implements 𝑓(𝑦(𝑥)) function with binary outcomes to label the branches by the 

function output. Any given Decision Tree is fully deterministic; however, specific algorithms may 

modify their trees based on extra information [21]. 

 

Figure 2-5: An example of a decision tree. 

 

The construction of a Decision Tree is a form of supervised learning. It aims to understand the 

significance of each piece of data by treating the response as a series of bits. As the most 

informative feature is placed at the root of the tree, a decision tree uses a heuristic to determine 

which attribute is the most informative. The heuristic used to identify the most informative feature 

is based on information theory, which is a method to calculate the amount of information present 

in data, regardless of its meaning. Therefore, a one-bit response encapsulates one bit of information 
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about yes/no. Decision trees rely on the data's order, and the tree's optimality is susceptible to 

change when the order of the data is altered [22]. Nonetheless, the used heuristic is intended to 

minimize this difference. 

 

2.2.4. Support Vector Machines 

Support Vector Machine (SVM) is a technique for supervised machine learning that allows 

Regression and Classification [23]. SVM plots data points in n-dimensional space, where n is the 

number of features. The classification is completed by finding an appropriate hyperplane that 

distinguishes between two classes. In n-dimensional space, the dimensions of the hyperplane are 

(n-1). 

 

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 = 𝛽0 + ∑ 𝛽𝑖\𝑥𝑖𝑛
𝑖=1     (2-6) 

 

• β0 is the bias term (also known as the intercept) in the SVM decision function. 

• β1, β2, ..., βn are the coefficients corresponding to the features x1, x2, ..., xn, respectively, 

in the SVM decision function. 

• x1, x2, ..., xn are the input features (also known as independent variables) of the data point 

to be classified. 

• The symbol Σ (sigma) represents the summation notation, indicating that we are summing 

the products of each coefficient βi with its corresponding feature xi from i = 1 to n. 

SVM assumes that classes are linearly distinguishable [24]. The equation's sign helps classify 

classes, while the magnitude aids in determining the distance between the observation and the 

hyperplane. The class assignment accuracy increases when the magnitude is high. Margin refers 

to the minimal distance of data points from the hyperplane to either class. A maximal margin is 

needed so that the magnitude will be high. This hyperplane is hence known as the Maximum 

Margin Classifier. Support Vectors are the observations that lie on or violate the hyperplane's edge. 
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Support Vectors assist the hyperplane. SVM has a maximum margin classifier with a soft margin 

(some observations can violate this margin) as shown in Figure (2-6). 

 

 

Figure 2-6: Support vector machine algorithm [197]. 
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2.2.5. Gaussian Naïve Bayes 

The Gaussian Naïve Bayes (NB) model is a Bayesian probability model that has been dramatically 

simplified [25]. This model evaluates the likelihood of an outcome given a variety of evidence 

factors. Given that the outcome happens, the model encodes both the likelihood of the result and 

the probability of the evidence variables. It is expected that the likelihood of one evidence variable, 

provided that the end result happens, is independent of the probabilities of other evidence 

variables, given that the final result occurs. 

 

The Bayes theorem gives a method for computing the posterior probability [26], 𝑃(𝑐|𝑥), using 

the prior probabilities, 𝑃(𝑐), 𝑃(𝑐𝑥), and 𝑃(𝑥|𝑐). A Naive Bayes classifier assumes that the 

influence of a predictor's value (x) on a given class (c) is independent of other predictor values. 

This hypothesis is known as class conditional independence. 

 

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
         (2-7) 

    

𝑃(𝑐|𝑥) = 𝑃(𝑥1|𝑐) × 𝑃(𝑥2|𝑐) × … . .× 𝑃(𝑥𝑛|𝑐) × 𝑃(𝑐)    (2-8) 

 

• 𝑃(𝑐|𝑥), represents posterior (the updated) probability of targeted class given predictor 

(features).  

• 𝑃(𝑐) represents the current probability of targeted class.  

• 𝑃(𝑥|𝑐) quantifies the probability of a predictor (features) given a desired class, also known 

as the likelihood. 

• 𝑃(𝑥), represents the current probability of predictor (features). 
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2.2.6. Deep Learning 

Machine learning's deep learning subfield is inspired by how the brain works, particularly the 

neural networks that make up the brain [124]. It involves training complex artificial neural 

networks on large amounts of data, allowing the network to learn and make intelligent decisions. 

It has been the driving force behind many advancements in various fields, including voice 

recognition, computer vision, and natural language processing [125]. It has also been used to 

improve machine learning techniques and contributed to developing self-driving cars, intelligent 

personal assistants, and machine translation services. 

 

One key difference between deep learning and traditional machine learning is the level of human 

involvement. In traditional machine learning, the feature engineering process (i.e., extracting 

useful features from raw data) is done manually by the data scientist. In deep learning, the neural 

network can automatically learn relevant features from the data [126]. This means that deep 

learning requires less human intervention and more data and computational power. Another 

difference is the type of tasks that each approach is suited for. Deep learning is particularly 

effective for tasks that involve unstructured data, such as image and speech recognition, while 

traditional machine learning algorithms are better suited for structured data [127]. 

 

There are several reasons why deep learning has become popular in recent years [128]: 

• Performance: Deep learning models can achieve state-of-the-art performance on a wide 

range of tasks, such as image and speech recognition. 

• Automated feature engineering: Deep learning models can learn useful features from raw 

data automatically without the need for manual feature engineering. 

• Ability to learn from unstructured data: Deep learning models can learn from unstructured 

data such as images, text, and audio, which is difficult for traditional machine learning 

models. 

• Scalability: Deep learning models can be trained on very large datasets, allowing them to 

learn complex patterns. 
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• Availability of hardware: The proliferation of GPUs has made it much easier to train deep 

learning models, as they can be trained much faster on GPUs than on CPUs. 

• Improved performance: Deep learning algorithms have been shown to outperform 

traditional machine learning algorithms in a wide range of tasks, such as image recognition, 

speech recognition, natural language processing, and game playing. 

• Big data: Deep learning algorithms are particularly effective for large and complex 

datasets, which are becoming increasingly common in many fields, such as healthcare, 

finance, and social media. 

• Advances in computing power: The availability of powerful GPUs and distributed 

computing systems has made it possible to train large deep learning models efficiently, 

which was not possible just a few years ago. 

• Open-source software: Many deep learning frameworks and tools, such as TensorFlow, 

PyTorch, and Keras, are open-source and freely available, making it easier for researchers 

and developers to experiment and innovate. 

 

As shown in Figure (2-7), there are several deep learning models, such as: 

 

• Convolutional neural networks (CNNs): These are often used for image and video 

recognition jobs. They are intended to handle data having a grid-like architecture, such as 

an image, and excel at discovering spatial hierarchies of characteristics. 

 

• Recurrent neural networks (RNNs): These are used for sequential data-based tasks, such 

as language modelling and machine translation. They are able to analyse temporal data, 

such as a time series or a natural language phrase. 

 

• Generative adversarial networks (GANs): These are used to generate synthetic data that is 

similar to a given training dataset. A generator and a discriminator are two neural networks 

that are used in the GAN and are taught to compete with one another. Both the generator 

and the discriminator work to generate synthetic data that is indistinguishable from the real 
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thing, while the discriminator attempts to determine whether or not a particular sample is 

genuine or synthetic. 

 

• Autoencoders: These are used for dimensionality reduction and feature learning. They are 

trained to reconstruct their input data using a smaller number of dimensions, which allows 

them to learn a compact representation of the input data. 

 

• Deep Reinforcement Learning (DRL): is a subfield of machine learning and artificial 

intelligence that combines deep learning techniques with reinforcement learning principles. 

It involves training agents to make decisions in an environment by interacting with it and 

receiving feedback in the form of rewards or penalties. The goal of the agent is to learn an 

optimal policy, which is a mapping from states to actions, that maximizes the cumulative 

rewards over time. 

 

 

Figure 2-7: A taxonomy of DL techniques [123]. 
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Deep learning can be effective for anomaly detection because it can learn and recognize patterns 

in data [129]. This can be particularly useful in cases where normal behaviour is complex and not 

easily captured by simple rules or thresholds. For example, in a network intrusion detection system, 

the normal behaviour of a network may be very complex. It may depend on many factors, such as 

the traffic type, the traffic's source and destination, and the time of day [130]. A deep learning 

model could learn to recognize the normal traffic patterns in a network and flag any deviations 

from those patterns as potential anomalies. Another advantage of deep learning for anomaly 

detection is that it can learn from unstructured data, such as images or time series data. This is 

useful in cases where the data is not easily represented in a structured format or where many 

features exist. 

 

  



22 

 

In network anomaly detection, both RNNs and CNNs could be helpful; however, CNN performs 

better than RNNs in anomaly detection in classification [122]. One reason a CNN might be a good 

choice for network traffic anomaly detection is that it can learn to recognize traffic data patterns 

indicative of normal behaviour. For example, a CNN could be trained on a large dataset of normal 

network traffic and learn to recognize the patterns and features that are characteristic of normal 

traffic. It could then be used to identify deviations from those patterns as potential anomalies. 

Another reason is that CNNs can be trained on very large datasets, which can be beneficial for 

learning complex patterns in the data. This is particularly useful in cases where normal behaviour 

is complex and not easily captured by simple rules or thresholds. 

 

Overall, deep learning has the potential to revolutionize many fields by allowing machines to learn 

and make intelligent decisions on their own. Deep learning can be a powerful tool for anomaly 

detection, particularly in cases where normal behaviour is complex and cannot be easily captured 

by simple rules or thresholds. CNN has the potential to be the type of deep learning technique that 

suits anomaly detection; hence it is detailed further in the following sub-section.  

 

 

A) Convolutional Neural Network  

Convolutional neural networks (CNN) are used to capture high-level features in combination with 

local spatial features. CNN is often effective with structured and spatially correlated data [27]. 

When it comes to object detection in photos, they excel. CNN may also be used to analyse words 

as separate textual units and to do character recognition text analysis. CNN also works effectively 

with speech data. CNN is most recognised for image recognition [28]; however, nowadays, CNN 
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is utilised in various applications, including autonomous vehicles, robots, and drones. Figure (2-

8) depicts the application of CNNs in computer vision. 

 

Figure 2-8: CNNs and computer vision [29] 

 

In comparison with natural networks, CNN scales well with data extracted from images. CNN 

allows data of images to modify the architecture of its network. Using CNNs, neurons may thus 

be arranged in three dimensions utilising length, height, and depth. These dimensions can be 

translated to the image's width pixel, height pixel, and RGB channels. CNNs convert the input 



24 

 

picture via a series of interconnected layers and produce a set of class probabilities. As seen in 

Figure (2-9), all CNN designs have several common layers. 

 

Figure 2-9: High-level CNN architecture [29] 

 

Figure (2-10) shows data loading into the input layer in CNN. For example, the input layer 

accepts the following dimensions of image data (RGB channel, width, height) 

 

Figure 2-10: 3D data input 
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CNN consists of several layers. The Convolutional Layer, Rectified Linear Unit (ReLU) Layer, 

Pooling Layer, and Fully Connected Layer are examples of these layers [30]. Following a detailed 

explanation of these layers. 

 

• Convolutional Layers  

The convolutional layer is the main component of the CNN architecture. Convolution layers alter 

the picture by adding a filter or kernel to the input image. This layer generates the feature map by 

computing a dot product between the region of neurons in the input layer and the filters [31]. Figure 

(2-11) shows the Convolution layer's input and output volumes. 

 

 

Figure 2-11: Convolution layer with input and output volume [29] 
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As seen in Figure (2-12), the convolutional layer output has the exact dimensions as the input. 

 

Figure 2-12: The convolution operation [29] 

 

The filter or kernel has smaller sizer than the input size, as shown in Figure (2-12). It applies the 

supplied stride value to the input data in order to produce complex convoluted features. Feature 

detector is a common name for this technique. Along the depth dimension, the feature map of each 

filter (shown in Figure 2-13) is added to form the 3D output. Therefore, each filter learns to 

recognise a certain characteristic. This filter's two-dimensional activation map is generated by 

sliding the filter across the input. 

 

Figure 2-13: Convolution and activation maps [29] 
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Output volume is determined by the staked activation maps. The activation volume values 

represent neuronal outputs that encompass a tiny portion of the input volume as shown in Figure 

(2-14). 

 

Figure 2-14: Activation volume output of convolutional layer [29] 

 

The receptive field is the area on the neurons that activates them to send information to other 

neurons. It is used to specify the filter map size. For example, if the filter size is set to 6 x 6 x 4, 

then the number of weights coming for an output layer neuron is 6 x 6 x 4= 144. CNN uses 

parameter-sharing to restrict the number of parameters which reduces training time. Each filter 

learns a single specific feature. As seen in Figure 2-15, once a filter has learned a feature, such as 

a horizontal line, in one region of the input, it does not need to learn it again for another place in 

the picture, making CNN's position invariant. 
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Figure 2-15: Example filters learned [32]. 

• ReLU Layer  

This layer employs the ReLU function as a neuron output for the following input x, 𝑓(𝑥) =

𝑚𝑎𝑥  (0, 𝑥). CNNs with ReLUs need less time to train than their counterparts with tanh function 

[33]. The equation for the tanh function is: 

tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))      (2-9) 

where: 

• tanh(x) is the output value between -1 and 1, 

• x is the input to the tanh function, which can be any real number, 

• exp() is the exponential function, and 

• (exp(x) - exp(-x)) / (exp(x) + exp(-x)) is the formula that maps x to the range (-1, 1). 

 

ReLU is also advantageous since it does not need normalised inputs. Inputs with positive values 

indicate that these neurons are learning. Thus, local response normalisation aids in error rate 

reduction. 
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• Pooling Layer  

After each convolutional layer, pooling layers are added. In order to minimise the spatial size of 

the feature maps, the pooling layer combine the output of neighbouring neurons within the same 

filter or map. Pooling layers reduce the dimensions of the feature maps and aid in preventing 

overfitting [34]. Each pooling provides a summary of the coverage area. Max pooling employs the 

max() function to spatially resize input. Using a 2 x 2 filter as an example, max() selects the biggest 

of the four results. The outcome is a condensed map of features. 

 

• Fully Connected Layer  

Using the input data, this layer calculates the probability of the data classes. A vector of N values 

is the output where each value reflects the likelihood of one of N output classifications. 

2.3. Intrusion Detection 

Every action taken to compromise the security, privacy, or availability of a resource is considered 

an intrusion [35]. The National Institute of Standards and Technology (NIST) offers a 

comprehensive document of standards for Intrusion Detection Systems. Effective intrusion 

detection is a challenging and elusive objective for system administrators and researchers in 

information security. The complexity of computer systems, the diversity of potential 

vulnerabilities, and the expertise of attackers combine to produce a problem domain that is 

exceedingly difficult to solve [36]. An intrusion occurs when a user gains unauthorised access, 

attempts to get such access, or makes malicious use of information resources. Anomaly intrusions 

and misuse intrusions are the two categories of intrusion. 

 

Therefore, traditional intrusion detection has concentrated on anomaly or misuse detection. 

Anomaly detection seeks to identify user or group behaviours that differ from normal patterns. 

Typically, it involves the development of knowledge bases based on profiles of previously 

observed actions. Generally, one of the following methods is used to detect anomalies [37]: 
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• Threshold detection, which detects abnormal activity on the server or network, such as 

abnormal CPU usage on a single server or abnormal network congestion. 

• Statistical measures, from statistical analysis of historical values. 

• Rule-based measures, with expert system support 

• Non-linear algorithms, include Neural Networks and Genetic Algorithms. 

 

Misuse detection is the second method, and it works by contrasting a user's activities with the 

patterns associated with malicious actors trying to get into a system [38]. Misuse detection uses a 

rule-based methodology, whereas anomaly detection often uses threshold monitoring to identify 

instances. Typically, one of the following techniques is used to detect misuse [39]: 

• Expert systems providing a set of attack-description rules. 

• Signature verification in which attack scenarios are converted into audit event sequences. 

• Petri nets, where pictorial Petri nets depict known attacks. 

• State-transition diagrams, which express attacks as a sequence of objectives and transitions. 

 

Expert systems, on the other hand, are notoriously rigid, with even little changes to an attack 

sequence having a major impact on the activity-rule comparison and therefore evading detection. 

Because of this weakness, particular solutions have been developed to further abstract the rule-

based approach, hence decreasing the granularity of the intrusion detection process [40]. 

 

Using the log data generated by specialised software, such as firewalls or the operating system, is 

the most common method for detecting intrusions. A manual examination of these records may 

suffice to detect intruders. Even after an attack, it is simple to analyse the data to assess the level 

of damage. This investigation is also crucial for finding intruders and documenting their attack 

patterns for future detection. A well-designed IDS can be employed to investigate audit data for 

such insights and is a valuable information system tool. The process of anomaly detection involves 

the creation of a typical activity profile for each user and the identification of any deviations from 

that profile that may represent efforts at intrusion. Generation of signatures that include all possible 
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attacks in order to avoid false negatives and signatures that do not match nonintrusive actions in 

order to avoid false positives is a crucial component of the process of detecting misuse of a system. 

On the other hand, false negatives are sometimes seen as being a more significant issue. The 

determination of threshold values is very necessary in order to guarantee that none of the 

previously described challenges will be exaggerated bay an excessive amount of value [41]. 

 

A variety of IDS commercial tools are generally accessible to security professionals nowadays. 

The majority of them concern the abuse detection model. As previously stated, the key problem 

with such systems is their lack of adaptability. Therefore, they are incapable of identifying new, 

unknown, or unique behaviour and require frequent vendor updates. A complete network security 

system will include the following three core security components: prevention of attacks, detection 

of attacks, and reaction to attacks [42]. Table (2-1) displays these constituents. 

Table 2-1: Components of a comprehensive intrusion detection system 

Prevention 

• Guarding against illegitimate users. 

• Removing application bugs. 

• Updating protocol implementation. 

• Stronger passwords. 

• Antivirus.  

• Firewalls 

Detection 

• Network-based IDS. 

• Anomaly based. 

• Host-based IDS. 

• Signature based. 

Reaction 

• Terminating active network 

connections.  

• Source traceback. 

• Filtration.  

• Reconfiguration. 
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• Rate limiting. 

 

• Prevention  

The objective of the preventative phase is to strengthen the system's overall security by 

installing appropriate security devices, eliminating application defects, upgrading protocol 

implementation, and enhancing the security of all Internet-connected PCs. In prevention, the 

network administrator implements preventative measures to protect the system from 

unauthorised users. Although it is impossible to avoid all attacks, the objective is to make DoS 

attacks more difficult to execute [43]. 
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• Detection  

A proper phase of attack detection should involve a defence system's response. Every attack 

detection technique aims to identify intrusions before they cause considerable damage. An 

intrusion is any unauthorized attempt to access, falsify, modify, or remove information in order 

to make a system unreliable [44]. A good system can rapidly and with a low percentage of 

false positives detect attacks. Researchers are making more frequent attempts to 

develop intrusion detection systems in response to the rising number of attacks (IDSs). The 

sensor, the analyzer, and the user interface are the primary components of an IDS [45]. The 

capability of such a system to offer an overview of malicious activity as well as warnings that 

notify network managers and speed up the response time is the most essential aspect of such a 

system. 

 

There are two primary types of intrusion detection systems (IDSs) known as signature-based 

detection and anomaly-based detection. If the monitored traffic matches the signatures in the 

IDS's database, the system will detect the attack. Signature-based methods are often more 

efficient and generate fewer false positives, but they require prior knowledge of breaches, 

leaving a network system vulnerable to new attacks until the signature database is updated. 

Anomaly-based IDSs detect intrusions by identifying abnormal patterns that deviate from 

normal behaviour, allowing them to detect new or modified attacks. Table (2-2) highlights the 

advantages and disadvantages of different detection methods [46]. Hybrid detection systems 

are a combination of both signature-based detection and anomaly-based detection, where the 

attack signature database is updated with information about anomalies found during the 

detection phase.   
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Table 2-2: Signature and anomaly-based intrusion detection systems: Pros and cons. 

 Signature-based Anomaly-based 

Pros • Identity known attacks effectively 

• Detailed analysis of contextual 

factors 

• Identity new vulnerabilities 

effectively 

• Enhance privilege abuse detection 

Cons • Ineffective against new attacks and 

known attacks variations. 

• Difficult maintain updates of 

signatures.  

• Maintaining knowledge extraction 

is costly and time-consuming. 

• Observable events are frequently 

changing which results in weak 

accuracy of normal profiles. 

• Ineffective when recreating behaviour 

profiles 

 

There are several strategies and methodologies associated with each category of intrusion detection 

systems, such as rule-based approaches, statistical measurement, and threshold detection methods 

[47]. An example of such a methodology is threshold detection, wherein the user determines the 

amount of network traffic that exceeds a certain threshold. Any measurable deviation from these 

parameters is considered an intrusion., which therefore causes the alarm to be triggered by the 

system. In sensor networks, this kind of method is rather standard. The detection method raises an 

alert for an occurrence when the sensory inputs are greater than a previously determined threshold 

value [48]. 

 

Similarly, a statistical technique determines the typical traffic patterns of network traffic, and an 

alert is issued if these patterns change significantly. On the other hand, rule-based systems have 

predetermined sets of rules. A rule-based classifier is activated when detecting a match between 

an input record and a system rule. Ultimately, evolutionary computation techniques have become 

an essential tool in numerous research endeavours in this subject, but improvements are expected. 

These techniques are often used in conjunction with rule-based methods to learn normal and 

abnormal behaviour [49]. SVM, NB, DT, ANN and CNN are examples of artificial intelligence 

approaches used to address intrusion detection issues [50]. 
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There are two distinct categories of IDSs, classified by the kind of data used for intrusion detection 

[51]. Two common types of intrusion detection systems are host-based (HIDS) and network-based 

(NIDS). A HIDS is a host-based intrusion detection system, therefore it only monitors activities 

on a single computer system at a time. As a result, HIDS protect essential computers that could 

hold confidential information. On the other hand, NIDS is not limited to packets that are intended 

for a particular host; rather, it protects all computers that are connected to the network. A network 

intrusion detection system (NIDS) is responsible for keeping an eye on and analysing all of the 

data coming from a network. Correlators are used to prioritise warnings from several detection 

systems in order to limit the amount of human intervention that is required and to combine the 

advantages of host-based and network-based IDSs. Correlators are able to do an analysis on 

warnings as well as comparable group alerts and assign priority depending on the degree of the 

danger posed to a key resource. This method may be helpful to analysts in spotting possible risks 

since it reduces the amount of data that they are needed to analyse [52]. 

 

• Reaction 

When an attack is expected, it is necessary to develop reaction mechanisms. The first benefit of an 

intelligent reaction strategy is that attack traffic uses less bandwidth. The second benefit is that 

attack flow packets are kept separate from normal flow packets. During the filtering phase, it must 

make sure that only attack traffic is filtered and that normal traffic is not changed [53]. Combining 

any detection technique with one or more response mechanisms is viable to achieve improved 

results [54]. There are many different response techniques that have been reported in the literature. 

Some of these tactics include terminating active network connections, filtering, designing and 

implementing new rules, and following tracebacks. Both active and passive defences may be used 

in response to an attack. The reaction mechanism in an active system provides a response to attack 

traffic at the same instant that it is received. On the other hand, the attack traffic record is analysed 

in a passive manner in passive mode [55] to discover the attack sources. 
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2.4. Internet of Things 

2.4.1. Overview of Internet of Things 

The Internet of Things (IoT) is a significant technological advancement that is affecting our daily 

lives. According to sources [79] [80], the number of devices classified as IoT was approximately 

27 billion in 2017, and this number is projected to increase to 75 billion by 2025 as shown in 

Figure (2-16). These devices will be collecting more than 180 zettabytes of data.  

The Internet of Things (IoT) is a network of interconnected objects, such as devices, home 

appliances, and vehicles, that have embedded electronics, sensors, and software to enable them to 

connect and exchange data. According to [81], any "thing" that is part of the IoT can be reached 

and controlled through the cyber world. These capabilities make IoT devices more useful and 

convenient to use. 

The Internet of Things (IoT) devices have a wide range of applications, including smart home 

technology and its associated gadgets such as Radio Frequency Identification (RFID), smart locks, 

smart meters, wireless sensors, wearable devices, security cameras, smart plugs, Machine-to-

Machine (M2M), and Machine-to-Human (M2H) technology. It is believed that the usage of IoT 

devices will eventually touch every aspect of human life. 

 

Figure 2-16: Growing number of IoT Devices [82]. 
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2.4.2. Challenges in Securing IoT 

Although the IoT incorporates aspects found in earlier computer networking paradigms, the IoT 

creates an entirely new situation and, thus, significant research difficulties, particularly in the 

security arena. The following points describe why unique and disruptive IoT security research 

should be pursued soon [83]. 

 

A) Network Size and Number of Devices  

The existing strategies and technology for cybersecurity were never intended to scale up to the 

level of tens of billions of devices [84], which means that securing the networks that make up the 

IoT will be a huge problem. In addition, the strict spending restrictions imposed by IoT 

manufacturers impose a restricted amount of memory and computing capabilities in IoT devices, 

in addition to the utilization of affordable compact batteries. Most significantly, because it will be 

difficult or perhaps impossible to replace the batteries in these devices (for instance, when the 

sensors are installed on streetlight poles [85] or when they are implanted within the human body 

[86]), this procedure will be costly and critical. As a direct consequence of this, increasing energy 

efficiency is of the utmost importance. A large number of devices and the limited computing, 

memory, and energy capabilities of IoT devices [87] make it very important to come up with and 

use new scalable security mechanisms that can do their tasks without putting too much of a burden 

on IoT devices' capacity to compute or store information. 

 

B) Human Factor 

One of the most transformative aspects of the Internet of Things will be the seamless connectivity 

between humans and machines. Machine learning and artificial intelligence recent developments 

will make it possible for the IoT to learn and adapt to our individual tastes and ways of living in 

our homes, workplaces, and when we are traveling. Small sensors can flawlessly distribute drugs 

[88] and collect physiological data [89] remotely, giving physicians a comprehensive view of our 

health condition.  
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On the other hand, if criminals or other unauthorized third parties can get the information that we 

provide about ourselves, our houses, or our companies, then we may be putting ourselves in a 

position where we are vulnerable. As a result, protecting personal information and restricting 

unauthorized access have become essential features of the IoT. The fact that people are now the 

primary participants in the sensing process raises another issue about the Internet of Things. There 

is a lack of assurance that humans will produce valid information, for instance, if they are reluctant 

or unable to do so [90]. This is because there are many factors that may influence human behaviour 

In order to solve this significant issue, innovative trust and reputation systems that can be scaled 

to accommodate billions of individuals will be necessary. 

 

C) Complexity  

The IoT is a complex ecosystem that will connect humans, machines, handheld electronic gadgets, 

and other commonplace items into a massively interconnected network. Because there is such a 

wide variety of devices, there will be multiple protocols, algorithms, and standards for the IoT. 

This will be especially true in the realm of networking. The majority of the IoT is still dependent 

on legacy, proprietary technologies. This has led to the creation of an anti-paradigm that is known 

as the "Intranet of Things" [91]. While some companies are moving toward more open IoT 

protocols like MQTT and the Internet Engineering Task Force (IETF) protocol stack for limited 

IoT devices [92], the vast bulk of IoT is still built on incompatible, older infrastructure. In addition, 

most previous research has assumed that the link between the Internet of Things' resources and the 

real-world things surrounding it is unchanging. On the other hand, the Internet of Things 

environment is highly heterogeneous and dynamic due to the unpredictable mobility of IoT 

devices, which results in abrupt changes in communication capabilities and position over time 

[93]. This is because IoT devices can be located anywhere in the world. In this kind of 

environment, fixing accessibility issues with the Internet of Things devices might be challenging. 
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2.5. Research Gap Identification 

Specific essential research difficulties in the realm of IoT security still need to be explored, despite 

the networking community's growing interest in the topic of IoT security. An overview of the 

issues and an investigation of them is provided below: 

 

2.5.1. Signature/Event/Rule Based Intrusion Detection Systems 

Stephen and Arockiam [94] proposed a hybrid lightweight and centralized method for detecting 

Sybil attacks and Hello Flood in IoT networks that use the Routing Protocol for Low-Power and 

Lossy. Their method utilizes an IDS agent, which calculates and monitors the intrusion ratio using 

detection metrics such as the sent and received number of packets. Raza et al. [95] created 

SVELTE, IoT real-time IDS. This system combines a firewall, an intrusion detection module and 

a 6LoWPAN Mapper. To detect the occurrence of network intrusions, it examines the mapped 

data. Its ability to detect a variety of attacks appears promising. However, only forged or altered 

data, selective forwarding attacks, and sinkhole attacks have been attempted. Santos et al. [96] and 

Shreenivas et al. [97] added an intrusion detection module to SVELTE to improve it. To identify 

suspicious network activity, the intrusion detection module compares the actual count of 

transmissions with the predicted one. Furthermore, they were able to hint at the location of the 

attacking nodes. Their results showed that when they merged the expected transmission count and 

rank-based methods, the total true positive (TP) rate increased. 

 

Pongle and Chavan [98] proposed a hybrid IDS with a centralized and distributed design that they 

tested with simulated scenarios and networks. It is designed to detect wormholes and other routing 

attacks. Jun and Chi [99] suggested specification based IoT IDS based on event processing. This 

system utilizes several event processing techniques to identify attacks. In this system, IoT devices 

are gathered, events are extracted, and then the system tries to detect attacks by comparing events 

pattern repository stored rules. Despite being more efficient than traditional IDS, the system 

utilizes CPU intensively. A bit-pattern technique and a deep packet analysis approach to establish 

an IDS for IoT were developed by Summerville et al. [100]. Bit-pattern processing is used to 
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analyse incoming network packets, while n-grams are used to identify features from among a set 

of similar bits. A match occurs when all relevant bits in the bit-pattern and n-grams match. Four 

separate attacks are used to evaluate the system, with a low false positive rate. 

 

A lightweight, adaptive and knowledge-driven IDS was proposed by Midi et al. [101]. It captures 

data of the monitored network and utilizes it to create a compelling collection of detection 

procedures dynamically. It can be expanded to accept new protocols while also serving as a 

knowledge exchange platform for incident detection collaboration. According to the findings, the 

system accurately identified the routing and DoS attacks. Thanigaivelan et al. [102] demonstrated 

a hybrid Internet of Things IDS. In this approach, each network node keeps an eye on its neighbour. 

At the data-link layer, the packets coming from the attacking node are blocked by the monitoring 

node and abnormal behaviour is reported to the parent node. Oh et al. [103] built an IoT lightweight 

distributed IDS based on a matching mechanism for packet payloads and threat signatures. They 

put the IDS to the test by using standard attacks and signature-based attacks from older IDSs like 

SNORT. The results showed that the performance of this IDS is promising. Ioulianou et al. [104] 

developed a lightweight and hybrid signature-based IDS for dealing with two types of DoS attacks: 

version number manipulation and "Hello" flood. Despite the positive results, their system has only 

been using Cooja based simulated environment. 

 

The IoT systems are notably dynamic and diverse in composition, as discussed in section (2.4.2). 

This feature, in addition to the nearly impossible predictability of the actions of criminal 

organizations, presents a substantial barrier to the design and implementation of efficient 

signature-based intrusion detection systems (IDS) for IoT. This study uses machine learning to 

overcome these challenges and create self-learning and adaptive detection techniques for securing 

the IoT. 
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2.5.2. Modelling of Inputs and Attacks on IoT Networks 

For machine learning algorithms to work correctly, they need to have a consistent and explicit 

formalization regarding their input data, states such as (attack/normal), and outputs. To be more 

precise, the idea of dimensionality reduction, which is used to define the process of selecting and 

extracting features [105], requires a specific input characterization to be applied. Methods for 

selecting features look for a subset of the initial features to use in their analyses. Three strategies 

are used for selecting features, including, filtering (information gain), wrapping (search led by 

accuracy), and embedding strategy (selecting features based on the number of predicted errors). 

Sometimes, data analysis tasks like regression and classification may be executed with more 

precision in the smaller space as compared to the original space in which they were conducted. 

Defining what an attack is and how to appropriately describe it is another key difficulty that has to 

be addressed. To put it differently, are we able to formalize and characterize: 

• the "regular" state of an Internet of Things network (that is, normal functioning) and 

 

• the "bad" state of an Internet of Things network (that is, an attack is occurring)?  

This effort was made in [106], where the authors linked the likelihood of an attack and its related 

data using Bayesian learning. On the other hand, further study is needed to describe attack classes 

and the effect that these classes have on the status of the network. In addition, an attacker may 

utilize this information to fine-tune an attack if they have access to data used in training or an 

understanding of how machine learning algorithms are trained prior to the creation of the IoT 

nodes, and unsupervised machine learning algorithms rely on attributes stored on the IoT devices’ 

hardware chip; this information should not be accessible. However, further research has to be done 

on the effects of attacks of this kind. 
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2.5.3. Machine Learning Intrusion Detection Systems 

There are two types of research on anomaly detection using the machine learning which are binary 

classification and multiclass classification. The binary classification aims to detect normal/attack 

states of the traffic without classification the attack. The multi-class classification aims at 

categorizing the attack into different types such as DDoS, APR Spoofing etc. Here are the studies 

related to binary classification and multi classification since 2019:  

 

A) Binary Classification 

As shown in Table (2-3), 21 studies utilized the KDDCUP99 and its refined version NSLKDD. 12 

of the studies achieved more than 99% binary classification accuracy. None of these studies were 

repeated on an IoT dataset. None of the reviewed studies aimed to or tried to reduce the input size.  

 

Table 2-3: Summary of the reviewed binary classification studies related to the use of Machine 

Learning in traffic anomaly detection 

Article Year Model Dataset Accuracy 

Li et al.  [115] 2019 RF KDDCUP99 96 

Yao et al.  [112] 2019 MSML KDDCUP99 96.6 

Anthi et al.  [114] 2019 DT Testbed 99.97 

Al Hakami et al. [116] 2019 NB KDDCUP99 84.06 

Jan et al. [117] 2019 SVM CICIDS2017 98 

Hwang et. al. [107] 2019 LTSM ISCX2012 99.99 

Arivud. et. al [108] 2019 CNN NSLKDD 99.67 

Vinayakumar et. [109] 2019 ANN KDDCUP99 93 

Faker et. al.[110] 2019 ANN CICIDS-2017 97.73 

Anani et. al.[111] 2019 LTSM NSLKDD 99.43 
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Li et. al.[113] 2019 GRU NSLKDD 82.87 

Chen et. al [145] 2019 SVM KDDCUP99 99.5 

Sapre et. al [147] 2019 NB KDDCUP99 99.37 

Kawelah et. al [148] 2019 DT KDDCUP99 96.47 

Wasi et. al [151] 2019 ANN KDDCUP99 99.23 

Kim et. al.[118] 2020 CNN-LTSM CICIDS-2017 93 

Roopak et. al.[119] 2020 CNN-LTSM CICIDS-2017 99.03 

Jiang et. al.[120] 2020 LTSM KDDCUP99 98.94 

Susilo et. al.[121] 2020 CNN BoT-IoT 91 

Ferrag et. al.[184] 2020 RNN BoT-IoT 98.31 

Hai et. al.[132] 2021 LTSM CICIDS-2017 99.55 

Pooja et. al.[133] 2021 BiLTSM KDDCUP99 99.7 

Biswas et. al.[134] 2021 LTSM-GRU NSLKDD 99.14 

Laghrissi et. al.[135] 2021 LTSM KDDCUP99 98.88 

Imrana et. al.[136] 2021 BiLTSM NSLKDD 94.26 

ElSayed et. al.[137] 2021 CNN InSDN 97.5 

Joshi et. al.[138] 2021 ANN CTU-13 99.94 

Alyasiri et. al.[139] 2021 GE MQTTset 97.94 

Hussain et. al.[140] 2021 DT MQTTset 99.47 

Vaccari et. al.[141] 2021 RF MQTTset 99.68 

Christiana et. al [146] 2021 SVM KDDCUP99 100 

Maithem et. al [150] 2021 ANN KDDCUP99 99.978 

Ullah et. al.[142] 2022 BiLTSM NSLKDD 99.92 
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Mohammed et. al [143] 2022 SVM KDDCUP99 99.99 

Reddy et. al [149] 2022 ANN KDDCUP99 99.2 

 

 

B) Multiclass Classification 

 

The Table (2-4) shows that the most used dataset for the multi-classification in the recent years is 

UNSW-NB15. Hence this dataset will be used in the multi classification test in Chapter5 also it is 

detailed further in Section 2.6.2. The Table (2-4) also show that the highest accuracy achieved on 

the UNSW-NB15 is 89.08%. 

 

Table 2-4: Summary of the reviewed Multi classification studies related to the use of Machine 

Learning in traffic anomaly detection. 

Article Year Model Dataset Accuracy 

Ge et al. [182] 2019 DNN BoT-IoT 98.09 

Vinayakumar et al. [109] 2019 DNN KDD99 92.9 

Chouhan et al. [183] 2019 CNN NSLKDD 89.41 

Ferrag et al. [184] 2019 RNN BoT-IoT 98.2 

Li et al. [186] 2019 GRU Testbed 80.3 

Nguyen et al. [187] 2019 GRU Testbed 95.6 

Moreton et al. [188] 2019 LTSM, GRU Testbed 96.06 

Dong et al. [193] 2019 MCA-LSTM UNSW-NB15 77.74 

Yang et al. [195] 2019 ICVAE-DNN UNSW-NB15 89.08 

Aldhaheri et al. [178] 2020 BoT-IoT SNN 98.73 

Ferrag et al. [179] 2020 RNN BoT-IoT 98.37 

Ge et al. [180] 2020 DNN BoT-IoT 99.79 

Malik et al. [181] 2020 LTSDM-CNN CIC-IDS2017 98.6 

Kasongo et al. [189] 2020 CNN-BiLTSM UNSW-NB15 77.16 
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Mebawondu  et al. [194] 2020 ANN-MLP UNSW-NB15 76.96 

Sethi et al. [174] 2021 Reinforcement NSLKDD 96.5 

ElSayed et al. [137] 2021 CNN InSDN 97.5 

Imrana et al. [136] 2021 BiLTSM NSLKDD 91.36 

Jia et al. [175] 2021 IE-DBN NSLKDD 98.79 

Borisenko et al. [176] 2021 LTSM CIC-IDS2018 94 

Liu et al. [177] 2021 DSSTE-LTSM NSLKDD 81.78 

Acharya et al. [190] 2021 Bagging UNSW-NB15 87.4192 

Aleesa et al. [191] 2021 RNN-LTSM UNSW-NB15 85.38 

Lin et al. [196] 2021 RF-SMOT-C4.5 UNSW-NB15 87.35 

Wu et al. [185] 2021 GBDT-SMOTE NSLKDD 78.47 

Ullah et al. [142] 2022 BilTSM NSLKDD 99.92 

Kasongo et al. [192] 2023 XGBoost-RNN UNSW-NB15 87.07 
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2.6. Datasets 

Many public datasets are commonly used for anomaly detection testing and evaluation, such as 

KDDCUP99 and UNSW-NB15 [56]. According to [57][58] and as found from the literature, the 

most used dataset for anomaly detection is KDDCUP99 which is used for testing and evaluation 

in Chapter 4, Chapter 5, and Chapter 6. According to [59][60], the UNSW-NB15 has more 

modern-day network attacks. As found in the literature, it is the most used dataset for multi-

classification in recent studies; hence it is included in Chapter 5 to evaluate the CNNwGFC model. 

These datasets are described in the below sub-sections: 

 

2.6.1. KDDCUP99 Dataset 

KDDCUP99 is a modified version of the dataset generated by an IDS software at Lincoln 

Laboratory, MIT, and evaluated in 1998 and 1999. The DARPA-funded program generated the 

dataset often known as DARPA98. Afterwards, the DARPA98 was selected for usage in the 

International Knowledge Discovery and Data Mining Tools Competition [62], which led to the 

creation of the KDDCUP99 dataset [63]. Here are the characteristics of the KDDCUP99 dataset:  

 

A) Genesis 

The KDDCUP99 dataset is built from TCPdump data generated from simulated network traffic 

that was collected in 1998 at Lincoln Labs through the use of the TCPdump program [64]. 

Following seven weeks of traffic, five million connection data were collected and used as a training 

set. The test dataset was generated from a two further weeks of simulated network traffic yielded 

two million test cases. The complete programme is available on the MIT website. The KDDCUP99 

data format is a formatted version of the TCPdump data. 
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B) Target classes 

Probing Attack, User to Root (U2R), Denial Of Service (DoS), Remote to Local (R2L), and 

Normal are the five classes of KDDCUP99 dataset [65]. Each class is further subclassified based 

on the attack method used. Table (2-5) list the distribution of patterns across class labels. 

 

C) Size and redundancy 

The KDDCUP99 training dataset has 4,898,431 data points, but because of a high amount of 

duplication (78%), only 1,074,992 unique data points were found [66]. The testing dataset has also 

a lot of redundancy, with 89.5% of it being repetitive, reducing it from 2,984,154 to 311,029 

patterns. Decrease in datasets is examined considered in this research. 

 

D) Features 

Each pattern consists of 41 features that are assigned a category: Traffic, Basic, or Content. In 

contrast, an investigation of the Mean Decrease Impurity measure determined that the value 17 

was unimportant [67]. Consequently, these 24 characteristics were examined during the 

evaluation. 

 

E) Skewedness 

Table (2-5) reveals the skewed nature of the dataset: 98.61% of the data falls into the Normal or 

DoS classes. This hinders the performance of classifiers for the remaining classes, as seen in the 

following sections. 

 

F) Non-stationary 

The KDDCUP99 dataset has a non-stationary character whi ch can be seen in the distributions of 

the training and testing datasets shown in Table (2-5) and Table (2-6). The training set has 23% of 

DoS cases and 75.61% of Normal cases, whereas the test set has 73.9% of DoS cases and 19.48% 
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of Normal cases. This kind of disparity has been found to negatively affect performance as per 

[68].  

 

Table 2-5: Distribution of the KDDCUP99 training dataset. 

 

Class Percentage 

Training 

Set 

Count 

Normal 75.61% 812,814 

DoS 23.00% 247,267 

Probe 1.29% 13,860 

R2L 0.09% 999 

U2R 0.01% 52 

Total 100% 1,074,992 

 

 

 

Table 2-6: Distribution of the KDDCUP99 testing dataset. 

Class Percentage 
Test Set 

Count 

Normal 19.48% 60,593 

DoS 73.90% 229,853 

Probe 1.34% 4,166 

R2L 5.21% 16,189 

U2R 0.07% 228 

Total 100% 311,029 
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2.6.2. UNSW-NB15 Dataset 

The UNSW-NB15 dataset is sufficiently close to KDDCUP99 in terms of generating process and 

functionality to be a suitable replacement [61]. It avoids several shortcomings that make 

KDDCUP99 unsuitable for testing a modern NIDS. Here are the characteristics of the UNSW-

NB15 dataset: 

 

G) Genesis 

This dataset was simulated over two days at the Australian Centre for Cyber Security (ACCS) 

using the IXIA PerfectStorm software in 16-hour and 15-hour sessions. 45 unique IP addresses 

were used over three networks, as opposed to 11 IP addresses utilized across two networks by 

the KDDCUP99. While usual behaviour was not replicated, attacks were picked from a CVE site 

that is routinely updated. TCPdump was used to capture communications at the packet level. There 

are a total of 2,540,044 records on the ADFA website [69]. For the UNSW-NB15 training and 

testing datasets, a much more compact split was used. 

 

H) Target classes 

UNSW-NB15 was created as an enhancement to the outdated KDDCUP99 dataset, it includes 10 

different categories: one Normal and nine atypical, including Worms, Analysis, Backdoors, 

Fuzzers, Exploits, DoS, Reconnaissance, Generic, and Shell Code. The UNSW-NB15 dataset has 

more target classes (10) than the KDDCUP99 (5), which increases the complexity of the 

classification task. Additionally, the higher Null Error Rate (55.056% in UNSW-NB15 compared 

to 26.1% in KDDCUP99) makes the classification task more challenging, which in turn reduces 

the overall accuracy of the classifier. 

I) Size and redundancy 

The training set of UNSW-NB15 has 175,341 data points, and the test set has 82,331. Although 

these numbers are relatively small compared to KDDCUP99, it was found that the size is sufficient 

for training high-variance classifiers for intrusion detection [131]. There are no duplicate data 

points in the dataset. 
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J) Features 

49 features were extracted and grouped into five categories - Flow, Basic, Content, Time, and 

Additional Generated - using Argus and Bro-IDS. The Mean Decrease Impurity method was 

applied to eliminate unimportant characteristics. 

 

K) Skewedness 

Compared to the KDDCUP99 dataset, the skewness of UNSW-NB15 is substantially lower than 

KDDCUP99 [70]. 

 

L) Non-Stationarity 

Table (2-7) and Table (2-8) demonstrates that data stationarity is preserved across the training 

and test sets in UNSW-NB15 since both have comparable distributions [70]. 

 

Table 2-7: Distribution of the UNSW-NB15 training dataset. 

Class Percentage 
Training 

Set 

Normal 31.94% 56,000 

Generic 22.81% 40,000 

Exploits 19.05% 33,393 

Fuzzers 10.37% 18,184 

DoS 6.99% 12,264 

Reconnaissance 5.98% 10,491 

Analysis 1.14% 2,000 

Backdoor 1.00% 1,746 

Shell Code 0.65% 1,133 

Worms 0.07% 130 

Total 100% 175,341 
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Table 2-8: Distribution of the UNSW-NB15 testing dataset. 

Class Percentage Test Set 

Normal 44.94% 37,000 

Generic 22.92% 18,871 

Exploits 13.52% 11,132 

Fuzzers 7.36% 6,062 

DoS 4.97% 4,089 

Reconnaissance 4.25% 3,496 

Analysis 0.82% 677 

Backdoor 0.71% 583 

Shell Code 0.46% 378 

Worms 0.05% 44 

Total 100% 82,332 
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2.6.3. IoT Dataset 

A) Attack Types 

This dataset was released in 2019 in the forms of pcap traces (unnormalized) [78]. It contains two 

types of attacks simulated on IoT devices: direct and reflective. The direct attacks included Ping 

of Death, Fraggle (UDP flooding), TCP SYN flooding, ARP spoofing, and, while the reflective 

attacks included TCP SYN, Smurf, SSDP, and SNMP. The researchers used devices such as the 

WeMo switch and WeMo motion lack substantial computing resources and are prone to 

malfunctioning when subjected to high levels of traffic. The threshold for what constitutes a "high" 

traffic rate varies between different devices. 

 In the reflective attacks simulated in this dataset [78], the traffic rate was kept low in order to keep 

the targeted device operational while still reflecting the attack. For instance, the WeMo switch 

would remain working under low attack traffic levels but become non-functional under higher 

levels, making the attack unsuccessful. The researchers launched various attacks at different levels 

(low: 1 packet per second, medium: 10 packets per second, high: 100 packets per second) and from 

different locations (either the internet or a local network). All of the attacks lasted for 10 minutes, 

and a total of 200 attacks were conducted. The researchers wanted to see how these attacks would 

affect traffic on various protocols, including ICMP, UDP, TCP, and ARP as well as application 

layer attacks like SMTP, HTTP, DNS, and HTTPS. The researchers aimed to conduct these attacks 

without being detected by a classic intrusion detection system. 

This dataset included simulations of attacks that were carried out both on the local network and 

the internet. For attacks originating from the Internet, the researchers used port forwarding to 

mimic malware behaviour on the gateway. For attacks launched from within the local network, 

they used IP and port spoofing.   
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B) Tool: 

The researchers developed a Python-based tool that can detect vulnerabilities in consumer IoT 

devices by conducting tests on the devices within the local network. These vulnerabilities may 

include weak encryption, SNMP, exposed ports, or unencrypted communication and SSDP. Once 

vulnerabilities are identified, the tool launches relevant attacks and generates annotations 

containing information about the targeted IP, the intruders’ host information, the start and end time 

of the attack, the bitrate, the attack protocol, and the attack port number. 

 

C) Testbed:  

Figure 2-18 shows the testbed used to capture the pcap traces, The researchers set up a testbed 

with a TPLink router running OpenWrt firmware and a variety of IoT devices:  Amazon Echo, 

Samsung smart camera, Phillips Hue bulb, Netatmo camera, WeMo switch, Chromecast Ultra, 

LiFX bulb, WeMo motion sensor, and iHome smart plug, TPLink smart plug. They included two 

attackers in the testbed, one local to the LAN and one remote on the internet. The researchers used 

an external hard drive connected to the router and the tcpdump tool to record all network traffic, 

both local and remote. They TCPdumps of normal and attack traffic over a 16-day period, 

annotating the attack traffic in the dataset. They also discovered that other attacks, known as wild 

attacks, were launched from the internet as a result of enabling port forwarding. They recorded all 

possible user interactions with each device. For example, the researchers used a tool installed on a 

Samsung galaxy tab to capture the normal behaviour touches. They replayed these touches at 

random intervals to simulate real user’s activity. For the Amazon Echo, they used a program that 

randomly selected statements from a predetermined text-to-speech list. The researchers collected 

pcap traces covering a one-month period of normal and attack traffic for ten IoT devices, which 

were released with annotations for the attacks. The published dataset includes 30 pcap files, each 

corresponding to a single day trace.  
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Figure 2-17: System prototype and testbed [78]. 
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2.7. Time Series 

The values or occurrences in a time series dataset are typically recorded at predetermined intervals 

[71]. Insights may be gleaned from the time series data produced by things like real-time 

surveillance systems, web traffic, network sensors, and data collection tools found online. There 

are several uses for time series datasets, including quality control, financial analysis, scientific 

research, and medicinal therapies. 

 

Large volumes of data may be created in dynamic situations and incorporate several data sources. 

This creates an extra difficulty when analysing time series data. In addition to many data formats, 

a rapid rate of change, and enormous volumes of gathered data, time may be recorded 

inconsistently, or data may include noise that obscures the "truth" inside the data. A thorough 

picture of the sequence of events may be obtained by correlating occurrences from numerous 

sources. 

 

Models of windows may be categorised as a landmark, sliding, or decaying [72]. Depending on 

the context, a window might be measured in either time or count. The exponentially decaying 

window (or damped window) is a sliding window variation in which previous events are given 

less weight than more recent ones. In landmark windows, aggregated values between a landmark 

period and the current are included. 

 

In order to handle event streams effectively, sliding windows are often used [73]. Instead of 

making decisions based on a representative sample or a thorough analysis of all the data, just the 

most recent data are used. Once the sums of the preceding N values have been computed, they are 

stored in the respective window as shown in Figure (2-19). As time goes on, new things are 

introduced while others are removed. Typically, the window has a defined size. Restricting the use 

of more current data helps ensure that irrelevant data does not affect statistical results. 
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Figure 2-18: Sliding Window Model 

 

Time series analysis aims to explain how past events might influence future occurrences, how two-

time series interact, and to predict future values [74][75]. The following procedures are utilised to 

achieve these goals: 

• Trend analysis entails the identification of a trend, cyclic movement, seasonal changes, or 

irregular movement. A trend line is used to represent trends over an extended period. The 

weighted average and least squares techniques are typical approaches for determining long-

term tendencies. 

 

• Cyclical movements are long-term swings or oscillations around a trend line or curve. 

 

• Seasonal variations are calendar-based and often recurring changes, such as holidays. 

Unregular motions are the result of random chance. 

 

• Similarity search identifies sequences with minor differences from a given sequence. In 

addition, similarity search is capable of matching either partial or whole sequences. Find a 

comparable-performing stock as an example. 
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• Clustering classifies time series data into subsets that share some defining feature, such as 

a high degree of similarity or a small average distance. Classification builds a model from 

the time series to predict the label of an unlabelled time series. 
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2.8. Summary  

In summary, the Internet of Things (IoT) enables us to link practically everything, including 

people, devices, and physical items, to the internet, which significantly impacts our society. In the 

following years, networked devices will be considerably increased, which means that the Internet 

of Things will offer significant problems to the information security industry. There are several 

challenges in securing IoT devices, including network size, the number of devices, the human 

factor as well the complexity of the IoT networks. 

 

There are several gaps in the research related to anomaly detection. The signature-based Intrusion 

detection systems are not dynamic; hence they lack the ability to detect anomalies. No study 

currently defines the parameters that could be used for anomaly detection. Most of the models 

reviewed in the related work are based on a high number of features which results in high usage 

of resources on the IoT devices which already suffers from resource constraints. Most used 

standard datasets, such as KDDCUP99 and UNSW-NB15, without testing on real IoT datasets. 

The highest multi-classification accuracy achieved from the literature on the UNSW-NB15 is 

89.08%,  

 

The gaps mentioned above are covered in the following chapters using the reviewed machine 

learning models: Artificial Neural Networks, Decision Trees, Support Vector Machines, Naïve 

Byes and Convolutional Neural Networks. Chapter 3 compares the performance of several 

machine learning algorithms in traffic anomaly detection on KDDCUP99 and IoT datasets. 

Chapter 4 focuses on optimising the input parameters to reduce the time and resources required to 

train the models. Chapter 5 aims to develop a model that archives an improved multi-classification 

accuracy on the UNSW-NB15 than the highest found from the literature (89.08%)  



59 

 

3. Chapter Three: Comparing the binary classification 

Performance of Machine Learning Algorithms in 

Anomaly Detection on KDDCUP99 and Created IoT 

datasets  

 

3.1. Overview 

This chapter tests the binary classification performance of the following Machine Learning (ML) 

algorithms in anomaly detection in the KDDCUP99 and created IoT datasets: Neural Networks 

(NN), Gaussian Naive Bayes (NB), Decision Trees (DT), and Support Vector Machine (SVM). It 

shows that Decision Trees and Neural Networks perform similarly in anomaly detection on both 

datasets. It also shows that the Gaussian Naive Bayes and Support Vector Machines model 

performance is lower than other models on the IoT dataset. 

 

This chapter includes four other sections: Methodology, Experimentation, Findings and 

Conclusion. The methodology details the proposed system architecture, the algorithm used, the 

environment specification, the data sample, and the evaluation performance metrics. The 

Experimentation section includes the results of applying the above-mentioned machine learning 

models on the datasets. The Findings section compares the performance of applying the machine 

learning algorithms on the KDDCUP99 and the IoT datasets. The conclusion section includes a 

summary of the findings of this chapter. 
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3.2. Methodology 

3.2.1. System Overview 

Various assumptions regarding consumer IoT networks are made in the threat model (Figure 3-1). 

It is assumed that the network includes a middle box device such as a home gateway router, that 

links the IoT network to other networks and analyses traffic between IoT devices on the local area 

network and the Internet. This device will analyse, store, alter, and block any network 

communication that passes through it. This middlebox handles all communication between LAN 

Wi-Fi devices and Internet-connected devices. 

 

The aim is to protect IoT devices from DoS attack traffic; hence they are connected to the 

middlebox which enables them to send and receive network traffic, including attack traffic. In 

addition, each device may counter DoS attacks, and the duration of consecutive attacks may vary. 

Traffic is analysed in time series of 1 second which is shorter than typical DoS attacks to avoid 

detection [76][77]. 

 

The programming logic of the trained model is mentioned in Algorithm 1. Algorithm 1 takes the 

data captured by the middlebox as well as the instructed ML model such as NN, SVM, NB or DT. 

After that, Algorithm 1 starts to train the model using the captured data. Once trained model is 

available, Algorithm 1 starts to analyse the traffic, if anomaly/attack is detected then traffic is 

blocked if not then traffic is allowed.  

Figure 3-1: Middlebox Approach for Capturing IoT traffic. 



61 

 

Algorithm 1 Machine learning based Anomaly Detection programming 

INPUTS: Datasets, machine learning models 

OUTPUT: machine learning based Anomaly Detector 

PROCEDURE:  

1:   Read traffic going through the middle box  

2:  Apply machine learning model  

3:  Train the machine learning model to detect normal/abnormal traffic trend 

4:  if Trained machine learning model is available then  

5:   Test the traffic  

6:   if traffic trend is abnormal then 

7:    Block traffic  

8:   else  

9:    Allow traffic 

10:   end if  

11:  else  

12:   Wait for creating a trained machine learning model 

13:  end if  

 

 

 

Python is the language chosen to implement the model. Google Colab is the execution environment 

chosen to implement, train and test the models. At the time of the experiment, the Google Colab 

allowed the use of 25.6 GB of RAM, Disk space of 225.89 GB and offered Intel(R) Xeon(R) CPU 

@ 2.20GHz. 
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3.2.2. Data Sample 

Figure (3-2) shows the flow followed to prepare the data sample for training and testing the models. 

The first dataset used is KDDCUP99 dataset which is detailed in section 2.6.1. The second sample 

is a subset of an open real IoT dataset which is detailed in section 2.6.3 [58]. The real IoT dataset 

was collected from an instrumented living lab with 10 IoT devices emulating a smart environment. 

The real IoT dataset used include several types of IoT devices, including motion sensors, cameras, 

plugs, lights, and appliances. The real IoT dataset is in the form of Packet Capture (PCAP) traces. 

The real IoT dataset contains the following type of attacks Address Resolution Protocol (ARP) 

Spoofing, TCP Sync, Ping of Death, UDP Device, TCP Sync Reflection, SMURF, Simple 

Network Management Protocol (SNMP), Simple Service Discovery Protocol (SSDP). 

 

 

Figure 3-2: Data preparation process [198]. 

Table (3-1) shows that UDP and TCP protocols represent more than 80% of the data. The number 

of attack cases represent 1.7% of the dataset as shown in Table (3-2).  Table (3-3) shows that the 

highest used services are TCP, NTP and UDP.  
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Table 3-1: Percentage of each Transport/Network protocol type in sample dataset. 

Protocol Type Percent 

ICMP 2.8 

IGMP 0.1 

TCP 32.3 

UDP 48.8 

NULL 16.0 

 

 

Table 3-2: Percentage of attack cases in sample dataset. 

Attack Percent 

0 98.3 

1 1.7 
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Table 3-3: Percentage of each application in sample dataset. 

service Percent 

TCP 21.9 

NTP 10.8 

UDP 9.4 

GQUIC 5.4 

ARP 4.8 

ICMP 2.8 

TLSv1.2 2.8 

SSHv2 2.7 

TLSv1 2.6 

DNS 2.4 

STUN 1.0 

HTTP 0.6 

HTTP/XML 0.6 

ICMPv6 0.3 

MDNS 0.2 

IGMPv2 0.1 

MQTT 0.1 

Others 31.4 
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3.2.3. Performance Evaluation 

The following metrics were calculated for each model: 

Accuracy: It measures the percentage of correct predictions made by the model out of the total 

number of samples in the dataset. Here is the equation for accuracy: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
         (3-1) 

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives) 

from the total number of samples. Here is the equation for Precision: 

𝑇𝑃

𝑇𝑃+𝐹𝑃
         (3-2) 

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual 

positive samples in the dataset. Here is the equation for Recall: 

𝑇𝑃

𝑇𝑃+𝐹𝑁
         (3-3) 

F1 Score: It Is used to assess the balance between precision and recall. Here is the equation for F1 

Score: 

Precision × Recall

Precision +Recall
       (3-4) 

where  

• TP = The Number of True Positives  

• TN = The Number of True Negatives 

• FP = The Number of False Positives 

• FN = The Number of False Negatives 

Accuracy, precision, recall and F1 are used to evaluate the four Machine Learning algorithms 

chosen for this study which will be detailed in the next section.  
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3.3. Experimentation 

The four machine learning algorithms were tested to classify normal and abnormal traffic. Here 

are the results for each machine learning algorithm: 

3.3.1. Gaussian Naive Bayes Model 

Gaussian Naive Bayes Model was implemented using Equation (3-1). The equation assumes that 

the variables (𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) are independent. The class to be predicted “c” is category of the 

traffic which is “Attack” or “Benign”. 

 

𝑃(𝐸|𝑐) = 𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) =  ∏ 𝑃(𝑎𝑖|𝑐)𝑛
𝑖=1               (3-1) 

 

 

The results are shown in Table (3-4). On KDDCUP99 dataset, it achieved 0.9614 accuracy in 

detection of attacks. It achieved a 0.9604 F1-Score. It achieved a precision of 0.9628. It achieved 

a recall of 0.9614. 

On the IoT dataset, it achieved 0.89914 accuracy in detection of attacks. It achieved 0.89808 F1-

Score. It achieved a precision of 0.91601. It achieved a recall of 0.89914. 

 

 

Table 3-4: Gaussian Naive Bayes Model Classification Results. 

Metric KDDCUP99 Dataset IoT Dataset 

Accuracy 0.9614 0.89914 

F1-Score 0.9604 0.89808 

Precision 0.9628 0.91601 

Recall 0.9614 0.89914 
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3.3.2. Decision Tree Model 

The C4.5 algorithm was used in implementing the decision tree model. The C4.5 algorithm builds 

a decision tree from a set of training data, where each internal node represents a decision based on 

one of the input features, each branch represents the outcome of that decision, and each leaf node 

represents the class label of the data instances falling into that leaf's region [199]. It is represented 

by Equation (3-2): 

 

 

𝐼𝑛𝑓𝑜(𝑆) = − ∑ ((
𝑓𝑟𝑒𝑞(𝐶𝑖,𝑆)

|𝑆|
) . 𝑙𝑜𝑔2 (

𝑓𝑟𝑒𝑞(𝐶𝑖,𝑆)

|𝑆|
))𝑘

𝑖=1         (3-2) 

 

Where:  

• Info(S): Represents the information or uncertainty in the set of data instances S with respect 

to their class labels. It measures how much randomness or disorder exists in the class 

distribution within S. 

• k: Represents the number of distinct classes in the dataset. In other words, if there are k 

unique class labels, the sum in the formula will have k terms. 

• freq(C_i, S): Represents the frequency (count) of instances in S that belong to class C_i. In 

other words, it counts how many data points in S have the class label C_i. 

• |S|: Represents the total number of data instances in set S. 

• log_2(x): Represents the base-2 logarithm of x. 

 

As shown in Table (3-5), using the KDDCUP99 dataset, the Decision Tree model achieved 0.9997 

in all metrics: accuracy, F1-score, precession, and recall. However, on IoT dataset, it achieved 

0.98244 accuracy in detection of attacks. It achieved 0.98243 F1-Score. It achieved a precision of 

0.98303. It achieved a recall of 0.98244. These results are shown in Table (3-5). 
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Table 3-5: Decision Tree Classification Results. 

Metric KDDCUP99 Dataset IoT Dataset 

Accuracy 0.9997 0.98244 

F1-Score 0.9997 0.98243 

Precision 0.9997 0.98303 

Recall 0.9997 0.98244 
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3.3.3. Support Vector Machine Model 

The supervised SVM model was implemented using the “Radial Basis Function” RBF kernel 

which is represented by the Equation (3-3):  

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2)         (3-3) 

• K(x, x'): Represents the RBF kernel function applied to two data points x and x', where x and 

x' are vectors of input features. 

 

• γ (gamma): Is a hyperparameter of the RBF kernel that controls the spread of the kernel 

function. It determines the influence of each training data point on the decision boundary. 

Smaller values of γ lead to a broader influence, while larger values of γ result in a narrower 

influence. 

 

• ||x - x'||^2: Represents the Euclidean distance (L2 distance) between the two data points x and 

x'. It measures the similarity between the two data points in the feature space. 

 

• exp(): Is the exponential function, which is used to scale the distance term. The exponentiation 

in the RBF kernel ensures that the similarity decreases as the distance between the data points 

increases. 

As shown in Table (3-6), using the KDDCUP99 dataset, the SVM as shown in Table 3-6, achieved 

0.9943 accuracy in detection of attacks. It achieved a 0.9942 F1-Score. It achieved a precision of 

0.9942. It achieved a recall of 0.9943.  

On the other hand, using the IoT dataset, it achieved 0.89963 accuracy in detection of attacks. It 

achieved a 0.89860 F1-Score. It achieved a precision of 0.91638. It achieved a recall of 0.89963.  

Table 3-6: SVM Classification Results. 

Metric KDDCUP99 Dataset IoT Dataset 

Accuracy 0.9943 0.89963 

F1-Score 0.9942 0.89860 

Precision 0.9942 0.91638 

Recall 0.9943 0.89963 
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3.3.4. Neural Network Model 

The topology of the ANN consisted of three hidden layers of size 8 nodes, 4 nodes and 2 nodes. 

The output layer is of a single node. Each node is using the following equation to calculate the 

weight:  

 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑ 𝑤𝑖𝑥𝑖𝑖 )          (3-4) 

 

The activation function used is the ReLU function which is defined as: 

𝑅𝑒𝐿𝑈(𝑥)  =  max (0, 𝑥)          (3-5) 

 

 

Results are shown in Table (3-7). it achieved 0.9987 in all metrics: accuracy, F1-score, precession, 

and recall on the KDDCUP99 dataset. On the IoT Dataset, it achieved 0.98103 accuracy and 

0.98172 precision.  

 

 

Table 3-7: ANN Classification Results. 

Metric KDDCUP99 Dataset IoT Dataset 

Accuracy 0.9987 0.98103 

F1-Score 0.9987 0.98102 

Precision 0.9987 0.98172 

Recall 0.9987 0.98103 
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3.4. Findings 

When comparing intrusion detection in both KDDCUP99 and IoT sample data set, neural network 

and DT maintained similar performance. NB and SVM failed to maintain the similar performance 

in intrusion detection in both KDDCUP99 and IoT sample data set. 

 

Figure (3-3) shows that using Decision Trees and Neural Networks, there is a difference of less 

than 1.8% in accuracy on both KDDCUP99 and IoT datasets. It also shows there is a difference of 

more than 8% for SVM and NB. 

 

 

 Dataset/Algorithm 

Figure 3-3: Comparing the accuracy result of the IoT dataset 

with KDDCUP99. 
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Figure (3-4) shows that using Decision Trees and Neural Networks, there is a difference of less 

than 1.8% in f1-score score on both KDDCUP99 and IoT datasets. It also shows there is a 

difference of more than 8.5% for SVM and NB. 

 

 

  

Dataset/Algorithm 

Figure 3-4: Comparing the f1_score result of the IoT dataset with 

KDDCUP99 dataset. 
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Figure (3-5) shows that using Decision Trees and Neural Networks, there is a difference of less 

than 1.7% in precision score on both KDDCUP99 and IoT datasets. It also shows there is a 

difference of more than 7% for SVM and NB. 

 

 

 

 

 

 

 

  

Dataset/Algorithm 

Figure 3-5: Comparing the precision score result of the 

IoT dataset with KDDCUP99 dataset. 

R
at

io
 



74 

 

These findings show the following: 

• While the SVM and NB machine learning models work well on the KDDCUP99 dataset, 

as found by [143][145][146][147], they do not perform well on the IoT dataset. 

  

• SVM performance dropped because it works better with a high number of features while it 

performs lower on a low number of features [152][153]. The KDDCUP99 has 41 features, 

while the IoT dataset has only 5 features. SVMs are a type of linear classifier that seeks to 

find the hyperplane in a high-dimensional space that maximally separates the data points 

of different classes. When the number of dimensions is low, it may be more difficult for an 

SVM to find a good separation boundary.  

  

• The reason the performance dropped for the NB model is that it assumes that features are 

independent; however, in anomaly, there is higher collinearity between different features 

[25][154][155]. In the IoT dataset, the is higher collinearity hence models that detect 

collinearity will perform better. The Naive Bayes classifier makes the assumption of 

independence between features because it simplifies the calculation of the probability of a 

feature occurring given a particular class. Without the independence assumption, the 

probability would need to take into account the interactions between all of the features, 

which can be computationally expensive and may not always be possible. 

 

• The NN and DT machine learning models maintained the same performance on both 

datasets, which shows that they have the potential to be used as anomaly detectors for IoT 

networks. 

  

• Machine learning algorithms need to be tested on different datasets to verify their 

performance as they differ from one dataset to another. 
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3.5. Summary 

This chapter explored applying Gaussian Naive Bayes, Support Vector Machine, Decision Trees 

and Neural Networks machine learning models in anomaly detection in the KDDCUP99 and IoT 

datasets. When applying the machine learning algorithms on the KDDCUP99 dataset, it is found 

that Decision Trees, Support Vector Machines and Neural Networks perform the best in binary 

classification anomaly detection. The Gaussian Naive Bayes model performance is lower than 

other models. The accuracy of the Gaussian Naive Bayes model is lower by 0.0361 than the 

average of the other models. The precision of the Gaussian Naive Bayes model is lower by 0.0347 

than the average of the other models. 

 

This chapter showed that when applying the machine learning algorithms on a real IoT dataset, the 

binary classification performance results differ from the performance on the KDDCUP99. The 

results show that NN and DT perform similarly on KDDCUP and IoT datasets. On the other hand, 

SVM and NB have a difference of 8% in accuracy. It also shows that SVM and NB have a 

difference of more than 7% in precision. 

 

When using all the features of the KDDCUP99 or IoT datasets, the findings show potential in 

using Decision Trees, Support Vector Machines in anomaly detection. However, in reality, only 

some of the features in the KDDCUP99 dataset are available when capturing network traffic. In 

addition, using all the features increases the resources and execution time required to generate the 

results. Hence the next chapter reduces the input size from 41 in the KDDCUPP99 dataset to 5 

features only and compares the performance results with the findings of this chapter.  
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4. Chapter Four: Reducing Anomaly Detection Time in the 

KDDCUP99 data via Dimensionality Reduction 

4.1. Overview 

This chapter aims to reduce the input size required by Neural Network, Support Vector Machine, 

Decision Tree, and Naïve Bayes machine learning models to detect binary classification anomalies 

in the IoT traffic. It measures the performance of the machine learning algorithms when using five 

features only as input. It compares the performance of applying the machine learning algorithms 

using five and all dataset features. The results will show that using only five features, the tested 

machine learning models can distinguish between normal and abnormal traffic on the KDDCUP99 

dataset in a reduced time of 58% on average. 

 

This chapter includes four other sections: Methodology, Experimentation, Findings and 

Conclusion. The methodology details the proposed system architecture, the algorithm used, the 

environment specification, the data sample, and the evaluation performance metrics. The 

Experimentation section includes the results of applying the above-mentioned machine learning 

models on the datasets using only five features. The Findings section compares the performance 

of applying the machine learning algorithms using five and all features as input. The conclusion 

section includes a summary of the findings of this chapter.  
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4.2. Methodology 

4.2.1. System Overview 

In order to compare the results between experiments, the same architecture, algorithm and system 

specifications are used. It is assumed that the network includes a middle box that links the IoT 

network to other networks and analyses traffic between IoT devices on the local area network and 

the Internet. This device will analyse, store, alter, and block any network communication that 

passes through it. It is illustrated in Figure (4-1). It is explained in further details in section 3.2.1. 

 

 

 

Algorithm 1 which is explained in section 3.2.1 in details is used. It takes the data captured by the 

middlebox as well as the instructed ML model. After that, the Algorithm starts to train the model 

using the captured data. Once trained model is available, the Algorithm starts to analyse the traffic, 

if anomaly/attack is detected then traffic is blocked if not then traffic is allowed. System 

specifications were detailed in section 3.2.1. Python is the language chosen to implement the 

model.  

  

Figure 4-1: Middlebox Approach for Capturing IoT traffic. 
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4.2.2. Selected Features 

A network monitor is a tool that records traffic data packets or log results when a network failure 

or attack occurs. Several types of network monitors are available, each with its own set of features 

and capabilities [166][167]. For example, Wireshark is a popular open-source network protocol 

analyser that can be used to capture and analyse network traffic in real time. NetFlow is a Cisco-

developed protocol that is used to collect and analyse IP traffic data and can be used for network 

traffic accounting, monitoring, and analysis. 

Most network monitors work by collecting data from network devices, such as switches, routers, 

or dedicated network collection devices [168]. The collected data is then analysed and reported 

on, providing network administrators with insights into network activity, performance, and 

security. Network monitoring is typically performed using a flow-based approach, where a traffic 

flow is defined using a five-tuple (source IP, source port, destination IP, destination port, and 

protocol) [169][170]. This information is used as a baseline to create a minimal feature list that 

can be captured by most network monitors. The following are the features in the minimal feature 

list: 

• Attack: The data in benign state were tagged with 0 and during attack with 1.  

 

• protocol_type: protocol type of the connection i.e. TCP, UDP and ICMP 

 

• Application: for example, http, ftp, smtp, telnet... and other  

 

• length: total bytes sent or received in one connection. 

 

• count: sum of connections to the same destination IP address occurred in the past 2 

seconds. 

 

• srv_count: sum of connections to the same destination port number occurred in the past 2 

seconds. 
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Table (4-1) shows sample values for each of the selected parameters.  

 

Table 4-1: Sample values for the selected features 

Parameter Sample Value 

Attack 0 

protocol_type ICMP 

service MQTT 

length 466 

count 13 

srv_count 599 
 

 

Table (4-2) shows the mapping of the traffic flow attributes to the minimal feature list:  

Table 4-2: Sample values for the selected features 

Feature  Traffic Flow  

protocol_type Protocol 

service Source/Destination Port 

count Source/Destination IP 

srv_count Source/Destination Port 
 

 

The “length” feature is added to the minimal feature list because it decides the amount of traffic 

generated between two devices which is a non-trivial information for anomaly detection 

[171][172]. The “length” can be detected and analysed by network monitors. Most network 

monitors, including Wireshark, and NetFlow, are able to capture and analyse packet size 

information as part of the network traffic data [173]. 
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4.2.3. Performance Evaluation 

The same performance metrics used in the previous experiment were used in this experiment. Here 

are the metrics: 

Accuracy: It measures the percentage of correct predictions made by the model out of the total 

number of samples in the dataset. Here is the equation for accuracy: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
         (3-1) 

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives) 

from the total number of samples. Here is the equation for Precision: 

𝑇𝑃

𝑇𝑃+𝐹𝑃
         (3-2) 

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual 

positive samples in the dataset. Here is the equation for Recall: 

𝑇𝑃

𝑇𝑃+𝐹𝑁
         (3-3) 

F1 Score: It Is used to assess the balance between precision and recall. Here is the equation for F1 

Score: 

Precision × Recall

Precision +Recall
       (3-4) 

where  

• TP = The Number of True Positives  

• TN = The Number of True Negatives 

• FP = The Number of False Positives 

• FN = The Number of False Negatives 
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4.3. Experimentation 

The four machine learning algorithms were tested to classify normal and abnormal traffic on the 

trimmed KDDCUP99 dataset. Here are the results for each machine learning algorithm: 

 

4.3.1. Gaussian Naive Bayes Model 

The Gaussian Naive Bayes Model was tested using the five selected features as input. The results 

are shown in Table (4-3). The results shows that the Gaussian Naive Bayes Model achieved better 

accuracy and precision after reducing the input size.  

 

Table 4-3: Gaussian Naive Bayes Model Classification Results. 

Metric Before After 

Accuracy 0.9614 0.9862 

F1-Score 0.9604 0.9858 

Precision 0.9628 0.9862 

Recall 0.9614 0.9862 
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4.3.2. Decision Tree Model 

Decision Tree Model was tested using the five selected features as input. The results are shown in 

Table (4-4). The results shows that the Decision Tree Model achieved a similar accuracy and 

precision before and after the input size reduction. 

 

Table 4-4: Decision Tree Classification Results. 

Metric Before After 

Accuracy 0.9997 0.9994 

F1-Score 0.9997 0.9994 

Precision 0.9997 0.9994 

Recall 0.9997 0.9994 
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4.3.3. Support Vector Machine Model 

The SVM model was tested using the five selected features as input and tested on IoT dataset. The 

results are shown in Table (4-5). The results shows that the SVM Model achieved similar accuracy 

and precision before and after the input size reduction. 

 

Table 4-5: SVM Classification Results. 

Metric Before After 

Accuracy 0.9943 0.9944 

F1-Score 0.9942 0.9944 

Precision 0.9942 0.9944 

Recall 0.9943 0.9944 
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4.3.4. Neural Network Model 

The Neural Network Model was tested using the five selected features as input. The results are 

shown in Table (4-6.) The results shows that the NN achieved similar accuracy and precision 

before and after the input size reduction. 

 

Table 4-6: ANN Classification Results. 

Metric Before After 

Accuracy 0.9987 0.9983 

F1-Score 0.9987 0.9983 

Precision 0.9987 0.9983 

Recall 0.9987 0.9983 
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4.4. Findings 

When comparing the results of the experiment done in Chapter 3 which used all features as input 

and the experiment done in this Chapter which uses only five features: protocol_type, Application, 

length, count and srv_count. It is found that the performance of the Neural Network, SVM and 

Decision Trees machine learning models is similar. However, for Gaussian Naive Bayes Model, 

there is an improvement in the performance. 

Figure (4-2) shows that there is less than 0.04% in accuracy between using all variables and the 

five selected features for Decision Trees, SVM and Neural Networks. However, there is an 

increase of 2.5796 % for Gaussian Naive Bayes Model. 

 

  Model 

Figure 4-2: The difference in accuracy between using all features and the five 

chosen features. 
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Figure (4-3) shows that there is less than 0.04% in F1-score between using all variables and the 

five selected features for Decision Trees, SVM and Neural Networks. However, there is a 

difference of 2.6490 % for Gaussian Naive Bayes Model. 

 

 

 

Figure 4-3: The difference in F1-score between using all features and the five chosen features. 
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Figure (4-4) shows that there is less than 0.04% in accuracy between using all variables and the 

five selected features for Decision Trees, SVM and Neural Networks. However, there is a 

difference of 2.24250 % for Gaussian Naive Bayes Model. 

 

  

D
if

fe
re

n
ce

 i
n
 %

 

Model 

Figure 4-4: The difference in F1-score between using all features and the five 

chosen features. 
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Figure (4-5) shows that there is less than 0.04% in accuracy between using all variables and the 

five selected features for Decision Trees, SVM and Neural Networks. However, there is a 

difference of 2.57963 % for Gaussian Naive Bayes Model. 
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Model 

Figure 4-5: The difference in recall between using all features and the five chosen 

features. 
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Figure (4-6) shows the time of execution before and after the input size reduction. Figure (4-7) 

shows that the time for identifying the test sample traffic type is reduced by more 70% for NN, 

56% for SVM, 75% for DT and 30% for NB. This result in average of 58%-time reduction for the 

four models. 

 

 

 

Figure 4-6: Execution time using all features and the five chosen features. 
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Model 

Figure 4-7: The difference in execution time between using all features and 

the five chosen features. 
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The findings show that: 

• The accuracy, precision, and F1-Score for the Neural Network, SVM and Decision Trees 

is similar when using five or all the features in the KDDCUP99 dataset. 

 

• The Neural Network achieved similar performance as it can reduce the influence of the 

irrelevant features (noise) while increasing the influence of the relevant features during 

learning [155][156][157]. Hence removing the irrelevant features did not impact the 

performance of the Neural Network.  

 

• Usually, SVM works better with high dimensional data as seen in Chapter3 however when 

the irrelevant features (noise) are reduced then SVM performance is not affected and, in 

some cases, it improves when it finds a good separation boundary [158][159].  

 

• The DT achieved similar performance due to its nature in constructing a tree-like model of 

decisions based on the data features. Hence removing the noise, will not impact the DT 

much unless an important root leaf feature is removed [160][161].  

 

• The reason for the NB model performance to be better unlike the drop seen in Chapter3 is 

that KDDCUP99 dataset five features are not highly correlated. The NB works better when 

the features are independent [25][155].  

 

• There is high difference in execution time for the Neural Network, SVM and Decision 

Trees. 

 

• Using fewer input features in a neural network generally means that there is less data for 

the network to process and learn from, which can make training the network 

faster[162][163]. This is because the network has fewer parameters to update and fewer 

computations to perform during training. 
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• Using fewer input features in a support vector machine (SVM) can also make training faster 

because there is less data for the model to process [164]. SVMs are a type of supervised 

machine learning model that can be used for classification or regression tasks. They work 

by finding the hyperplane in a high-dimensional space that maximally separates different 

classes or values. When there are fewer input features, there are fewer dimensions in this 

space, which means that the SVM has less work to do in order to find the hyperplane. 

 

• Using fewer input features in a decision tree can also make training faster because there is 

less data for the model to process [160]. Decision trees are a type of supervised machine 

learning model that can be used for classification or regression tasks. They work by 

learning a series of rules that can be used to make predictions based on the values of the 

input features. When there are fewer input features, there are fewer rules that the decision 

tree has to learn, which means that it has less work to do. 

 

• Naive Bayes classifiers are generally fast to train comparing to other models as seen in 

previsions studies [144][165] because they are based on simple probability estimates 

hence, they achieved lower difference in execution time than other models. 

 

• Using fewer input features in a Naive Bayes classifier can make training faster because 

there is less data for the model to process. Naive Bayes classifiers are a type of supervised 

machine learning model that can be used for classification tasks. They are based on the 

idea of using Bayes' theorem to predict the probability of a given class label, based on the 

values of the input features. When there are fewer input features, there are fewer 

probabilities that the classifier needs to estimate, which means that it has less work to do.  
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4.5. Summary 

In summary, this chapter compared the performance of the Neural Network, Support Vector 

Machine, Decision Tree, and Naïve Bayes machine learning models in binary classification 

anomaly detection when using all KDDCUP99 dataset features and five selected features as input. 

The selected input features are protocol type, service type, total length, count of connections from 

the same IP and number of connections from the same destination port. The results show that the 

applied machine learning modes can distinguish between normal and abnormal attacks using all 

or five features only. The Neural Network, Support Vector Machine, and Decision Tree maintained 

the same performance. The Naïve Bayes achieved better performance when using only five 

features. The benefit of using only five features is the reduced time required to train and process 

data by the machine learning model. The results show a reduction in time required by 58% on 

average. Hence, it is concluded that using only five features; the tested machine learning models 

can distinguish between normal and abnormal traffic on the KDDCUP99 dataset in a reduced time 

of 58% on average. 
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5. Chapter Five: Anomaly Detection and Classification using 

CNNwGFC 

5.1. Overview 

This chapter tests the Convolutional Neural Networks with Global Feature Correlation 

(CNNwGFC) model, which is an enhanced Convolutional Neural Networks model, in detecting 

and classifying anomalies in network traffic data. In this chapter, the CNNwGFC model is tested 

on two datasets: KDDCUP99 and UNSW-MB15 datasets. The performance results are compared 

with Neural Network Model and the classic Convolutional Neural Network model. The results will 

show the global feature correlation structure can be added to the CNN model in order to improve 

the convolutional network's ability to achieve better network traffic anomaly classification results. 

 

This chapter includes three other sections: Methodology, Findings and Summary. The 

Methodology section includes a description of the CNNwGFC model; the datasets used for testing, 

the experiment environment specifications, and the performance metrics used to evaluate the 

CNNwGFC model. The Findings section shows the performance results of applying the 

CNNwGFC on the datasets and compares its performance with Neural Networks and classic 

Convolutional Neural Networks. The conclusion section includes a summary of the findings of 

this chapter. 
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5.2. Methodology 

The CNNwGFC detection model presented in this thesis makes use of CNN in order to extract 

both global and local characteristics of the target data set. After going through some preliminary 

processing, the raw data is then split into a training set and a testing set (70:30), as shown in Figure 

(5-1). Through the use of the training set, the model is able to learn the traffic characteristics of a 

variety of attacks. The data from the test set is then used to validate the accuracy of the CNNwGFC 

detection model. Figure (5-1) presents a representation of the model's iterative learning process. 

 

 

 

Figure 5-1: CNNwGFC model Training Process 
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5.2.1. CNNwGFC Model 

CNN is a model of an artificial neural network that can be trained on a global scale and has many 

stages. It can create particular network topologies for certain tasks, and after pre-processing the 

data, it can learn general, abstract features and concepts from the pre-processed data. When dealing 

with network traffic data, the traffic characteristics of each type of attack are converted to images 

of two-dimensions. After that, a convolutional neural network is used to extract the local as well 

as global features of the images to identify relevant traffic features indicating various types of 

attacks. 

 

Figure (5-2) shows the enhanced network structure, consisting of three convolutional layers, three 

pooling layers, Global Feature Correlation layer, fully connected layer, and SoftMax classifier. 

The input layer receives a two-dimensional matrix that is made of the characteristics of the 

network's traffic, and the size of this matrix is what defines the size of the input vector. The 

function of the convolution layer is to extract and map data from one plane to the next. At the same 

time, the pooling layer functions as a fuzzy filter and is responsible for the extraction of secondary 

features. Because the data on network traffic goes via the GFC structure in the final feature layer, 

the feature mapping has been adjusted to extract the global characteristics that are relevant to the 

situation. The fully connected layer is responsible for connecting all the features and pass the 

results to the SoftMax function. 
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Figure 5-2: CNNwGFC Model 

 

5.2.2. GFC Structure 

This section details structure of the Global Feature Correlation (GFC) structure. Figure (5-3) 

illustrates the local features of the GFC structure. In this thesis, the data flow is processed into 

images of two-dimensions. The local characteristics of benign and abnormal traffic are markedly 

different. However, the partial differences in features between different types of abnormal traffic 

are not obvious and require macroscopic observation. The last feature layer of the model is added 

to further optimize the mapping of features.  The network structure design is shown in Figure (5-

3). The structure includes, three convolution operations, two matrix multiplications, residual skip 

connection to prevent the vanishing gradient problem. The convolution with the RELU activation 

function is used to produce normalized feature map. The matrix size is constant.  
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Figure 5-3: Global Feature Correlation Structure 

Dimension of the feature map is generated from the CNN which is (𝐻 × 𝑊), where 𝐻 represents 

height and 𝑊 represents width. This will result in 𝑥 ∈ 𝑅𝐻×𝑊,  hence each 𝑥𝑖 has: 

𝑓(𝑥𝑖 , 𝑦𝑗) = 𝑒𝑡(𝑥𝑖,𝑦𝑗)𝑔(𝑥𝑖,𝑦𝑗)
𝑇

         (5-1) 

• 𝑓(𝑥𝑖 , 𝑦𝑗): Represents the similarity or influence function between two vectors x_i and y_j. 

• 𝑒𝑡(𝑥𝑖,𝑦𝑗)𝑔(𝑥𝑖,𝑦𝑗)
𝑇

: Is an expression involving two vectors 𝑥𝑖 , 𝑦𝑗  and two functions t() and g() 

used to compute the similarity value. 
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𝑦𝑖 =
1

∑ 𝑒𝑥𝑖𝑖
∑ 𝑓(𝑥𝑖 , 𝑦𝑗)𝐴𝑗 . 𝑖(𝑥𝑖)          (5-2) 

• 𝑦𝑖 : Represents the output value for a specific index i. 

• ∑ 𝑒𝑥𝑖
𝑖 : This is the sum of exponential terms for all 𝑥𝑖values in the dataset. 

• ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)𝐴𝑗 : This is the sum of terms involving a function 𝑓(𝑥𝑖 , 𝑦𝑗) for all possible 

indices 𝑦𝑗 . 

 

𝑍𝑖 = 𝑅𝑒𝑙𝑢(𝑊𝑧(𝑥𝑖 + 𝑦𝑖))          (5-3) 

• 𝑍𝑖: Represents the output value for a specific index i. 

• 𝑅𝑒𝑙𝑢: The Rectified Linear Unit activation function. 

• 𝑊𝑧: Represents a weight matrix for the linear transformation. 

• 𝑥𝑖𝑎𝑛𝑑 𝑦𝑖: These are input vectors for index i. 

 

5.2.3. Datasets 

The datasets used in this experiment are the KDDCUP99 and the UNSW-NB15 datasets. The 

following procedures were applied on both datasets separately:  

A) Data transformation 

The symbolic values of "state", "proto", "service," as well as "attack_cat" were translated to 

numeric values. For instance, "proto" attribute has three significant values which are "TCP," 

"UDP," and "ICMP”. These values were mapped to 1, 2, and 3, respectively, other values (IGMP, 

SCTP, RDP) were mapped to 4. The processed features are merged with the unprocessed features. 

 

B) Data normalization 

Each attribute has a very different range of possible values. The dataset requires normalization in 

order to be used. Because the data with high values have a large weight, the data with low values 

have very little effect on the outcomes. As a consequence, part of the information in the initial data 
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set could be lost. For this, the values are normalized by the use of the linear transformation 

represented by the following formula: 

𝑓(𝑥) = {

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, 𝑥𝑚𝑎𝑥 ≠ 𝑥𝑚𝑖𝑛

0,  𝑥𝑚𝑎𝑥 ≠ 𝑥𝑚𝑖𝑛

        (5-4) 

The transformation has two cases depending on whether x_max is equal to x_min or not: 

If x_max is not equal to x_min (x_max ≠ x_min): 

In this case, the function returns the normalized value of x within the range [x_min, x_max]. It 

scales the input x to a value between 0 and 1 based on its position within the specified range. When 

x is equal to x_min, the output is 0, and when x is equal to x_max, the output is 1. 

If x_max is equal to x_min (x_max = x_min): 

In this case, the function returns 0 for any input x. This means that the transformation is constant 

and outputs 0 regardless of the input value. 
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5.2.4. Experiment Environment 

The experiment was conducted on a server with Ubuntu 20.04 LTS. Python 3.10 was used as the 

programming language, CUDA 10.2 and Pytorch1.10.1 were used for backend processing, and an 

Nvidia GTX 1080 GPU with 11 Gigabytes of video RAM.     

 

5.2.5. Evaluation Metrics 

The metrics used to evaluate the model in this study are: 

Accuracy: It measures the percentage of correct predictions made by the model out of the total 

number of samples in the dataset. Here is the equation for accuracy: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
         (5-5) 

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives) 

from the total number of samples. Here is the equation for Precision: 

𝑇𝑃

𝑇𝑃+𝐹𝑃
         (5-6) 

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual 

positive samples in the dataset. Here is the equation for Recall: 

𝑇𝑃

𝑇𝑃+𝐹𝑁
         (5-7) 

where  

• TP = The Number of True Positives  

• TN = The Number of True Negatives 

• FP = The Number of False Positives 

• FN = The Number of False Negatives 
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5.3. Findings 

The CNNwGFC model, Neural Network, and regular CNN were applied on the two data sets. In 

the beginning, the experiment was performed on KDDCUP99, which is the most used dataset in 

field of network intrusion and considered to be the benchmark. The evaluation metrics for the three 

models were compared. The results of the experiments are presented in Figure (5-4) and Figure 

(5-5). The CNNwGFC model presented in this study achieved an accuracy of 99.9 percent, which 

is close to the accuracy achieved by the NN and classic CNN. Figure (5-4) shows a comparison of 

three different models using the KDDCUP99 dataset.  

Then, the same comparison experiment was performed on the UNSW-NB15 dataset, and the 

experiment outcomes are presented in Figure (5-5) below. The tested CNNwGFC model achieved 

better results when measured against a variety of assessment measures. CNNwGFC achieved 

15.34 % higher accuracy than classic CNN. It achieved 15.39 % higher recall than classic CNN. 

It achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is 

higher by 7.16 than the highest from the literature [195].   

 

  

Model 

Figure 5-4: Evaluation Metric Results on the KDDCUP99 dataset. 
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Figure 5-5: Evaluation Metric Results on the UNSW-NB15 dataset. 
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5.4. Summary 

This chapter tested the CNNwGFC model, which is an enhanced CNN model to detect and classify 

anomalies in network traffic data. The CNNwGFC model was tested on two datasets: KDDCUP99 

and UNSW-NB15 datasets. The performance results were compared with Neural Network Model 

and the classic Convolutional Neural Network model. The results show that the CNNwGFC model 

achieved on the KDDCUP99 dataset an accuracy of 99.9%, which is close to the accuracy achieved 

by the NN and classic CNN. However, the CNNwGFC model achieved better results when 

measured against various performance metrics on the UNSW-NB15 dataset. CNNwGFC achieved 

15.34% higher accuracy than classic CNN. It achieved 15.39% higher recall than classic CNN. It 

achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is 

higher by 7.16 than the highest from the literature [195]. This shows that the global feature 

correlation structure can be added to the CNN model in order to improve the convolutional 

network's ability to achieve better network traffic anomaly classification results.  
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6. Chapter Six: Conclusions and Future Work 

6.1. Conclusions 

In conclusion, the Internet of Things (IoT) enables us to link practically everything, including 

people, devices, and physical items, to the internet, which significantly impacts our society. In the 

following years, networked devices will be considerably increased, which means that the Internet 

of Things will offer significant problems to the information security industry. This thesis identified 

the challenges and gaps in securing the Internet of Things networks. The challenges are network 

size, the number of devices, the human factor, and the complexity of IoT networks. The gaps 

identified include the lack of research on the following: 

• Signature-based intrusion detection systems use for anomaly detection. 

 

• Modelling input parameters required for anomaly detection in IoT networks. 

 

• Comparison of the performance of machine learning algorithms on standard and real IoT 

datasets.  

 

• High performance machine learning model to classify anomalies in the IoT networks.   

 

This thesis explored applying Gaussian Naive Bayes, Support Vector Machine, Decision Trees 

and Neural Networks machine learning models in anomaly binary classification in the 

KDDCUP99 and IoT datasets. This thesis showed that when applying the machine learning 

algorithms on a real IoT dataset, the performance results differ from the performance on the 

KDDCUP99. The results show that NN and DT perform similarly on KDDCUP and IoT datasets. 

On the other hand, SVM and NB have a difference of 8% in accuracy. It also shows that SVM and 

NB have more than a 7% difference in precision. 
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When using all the features of the KDDCUP99 or IoT datasets, the findings show potential for 

using Decision Trees, Support Vector Machines in anomaly detection. However, in reality, only 

some of the features in the KDDCUP99 dataset are available when capturing network traffic. In 

addition, using all the features increases the resources and execution time required to generate the 

results.  

 

This thesis compared the binary classification performance of the Neural Network, Support Vector 

Machine, Decision Tree, and Naïve Bayes machine learning models in anomaly detection when 

using all KDDCUP99 dataset features and five selected features as input. The selected input 

features are protocol type, service type, total length, count of connections from the same IP and 

number of connections from the same destination port. The results show that the applied machine 

learning modes can distinguish between normal and abnormal attacks using all or five features 

only. The Neural Network, Support Vector Machine, and Decision Tree maintained the same 

performance. The Naïve Bayes achieved better performance when using only five features. The 

benefit of using only five features is the reduced time required to train and process data by the 

machine learning model. The results show a reduction in time required by 58% on average. Hence, 

it is concluded that using only five features; the tested machine learning models can distinguish 

between normal and abnormal traffic on the KDDCUP99 dataset in a reduced time of 58% on 

average. 

 

This thesis tested the CNNwGFC model, which is an enhanced CNN model, in detecting and 

classifying anomalies in network traffic data. The CNNwGFC model was tested on two datasets: 

KDDCUP99 and UNSW-NB15 datasets. The performance results were compared with Neural 

Network Model and the classic Convolutional Neural Network model. The results show that the 

CNNwGFC model achieved on the KDDCUP99 dataset an accuracy of 99.9%, which is close to 

the accuracy achieved by the NN and classic CNN. The CNNwGFC model achieved better results 

when measured against various performance metrics on the UNSW-NB15. CNNwGFC achieved 

15.34% higher accuracy than classic CNN. It achieved 15.93% higher recall than classic CNN. It 

achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is 

higher by 7.16 than the highest from the literature. This shows that the global feature correlation 
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structure can be added to the CNN model to improve the convolutional network's ability to achieve 

better network traffic anomaly classification results. 

 

 

6.2. Future Work 

Throughout the work from each chapter, further work can be done to achieve more information. 

The future investigations recommended are as follows: 

• The testing was done on the popular machine learning algorithms; however, further testing 

needs to be done on other classification machine learning models such as Linear 

Classifiers, Logistic Regression, Perceptron, Quadratic Classifiers, K-Means Clustering, 

Boosting, Random Forest (RF) machine learning algorithms.  

 

• Add more datasets to the testing, such as NSL-KDD and UKM-IDS20 and other real 

network IoT datasets. These datasets will be added to confirm further the performance of 

the machine learning models, dimensionality reduction results, and the performance of the 

CNNwGFC model.  

  

• Test and compare the performance of the CNNwGFC before and after the dataset input 

size reduction. This will help determine whether dimensionality reduction benefits the 

CNNwGFC machine learning model. 
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