

Anomaly Detection for IoT Networks Using

Machine Learning

By:

HUSAIN ABDULLA

A Thesis Submitted

in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

College of Engineering, Design and Physical Sciences

BRUNEL UNIVERSITY LONDON

July 2023

I

Abstract

The Internet of Things (IoT) is considered one of the trending technologies today. IoT affects

various industries, including logistics tracking, healthcare, automotive and smart cities. A rising

number of cyber-attacks and breaches are rapidly targeting networks equipped with IoT devices.

This thesis aims to improve security in IoT networks by enhancing anomaly detection using

machine learning.

This thesis identified the challenges and gaps related to securing the Internet of Things networks.

The challenges are network size, the number of devices, the human factor, and the complexity of

IoT networks. The gaps identified include the lack of research on signature-based intrusion

detection systems used for anomaly detection, in addition to the lack of modelling input parameters

required for anomaly detection in IoT networks. Furthermore, there is a lack of comparison of the

performance of machine learning algorithms on standard and real IoT datasets.

This thesis creates a dataset to test the anomaly binary classification performance of the Neural

Networks, Gaussian Naive Bayes, Support Vector Machine, and Decision Trees machine learning

algorithms and compares their results with the KDDCUP99 dataset. The results show that Support

Vector Machine and Gaussian Naive Bayes perform lower than the other models on the created

IoT dataset. This thesis reduces the number of features required by machine learning algorithms

for anomaly detection in the IoT networks to five features only, which resulted in reduced

execution time by an average of 58%.

This thesis tests CNNwGFC, which is an enhanced Convolutional Neural Network model, in

detecting and classifying anomalies in IoT networks. This model achieves an increase of 15.34%

in the accuracy for IoT anomaly classification in the UNSW-NB15 compared to the classic

Convolutional Neural Network. The CNNwGFC multi-classification accuracy (96.24%) is higher

by 7.16 than the highest from the literature.

Keywords: IoT; Machine Learning; Security; Anomaly Detection

II

III

Dedication

I dedicate this dissertation to all people who supported me throughout my educational years,

especially …

to my mother and father for their words of support and encouragement;

to family members for their inspirational words;

to friends for instilling the importance of hard work and higher education;

to mentors and tutors for their efforts in mentoring and tutoring me.

IV

Declaration

I confirm that this thesis is my original work and is being submitted to the Post-Graduate Research

Office for the first time. The research, writing, and review of this thesis were conducted by me,

with guidance and supervision from my supervisors in the Department of Electronic and Computer

Engineering, College of Engineering, Design and Physical Sciences, Brunel University London

UK. All information obtained from other sources has been appropriately cited and acknowledged.

Husain Abdulla

January 2023

V

Acknowledgements

I would like to extend my sincere gratitude to my supervisors, without whose guidance, support,

and encouragement, this thesis would not have been possible:

Prof. Hamed Al-Raweshidy Dissertation Principal Supervisor, Brunel University

Dr. Wasan Shakir Awad Dissertation Supervisor, Ahlia University

I am deeply grateful to all of these individuals, as my dissertation would not have been successful

without their support and willingness to help. My parents, brothers, and sister have always believed

in my ability to succeed and have provided me with everything I needed to get to where I am today.

My wife has been an endless source of support and motivation throughout this process. Lastly, I

want to thank my friends for helping me through the difficult times with laughter and

encouragement.

VI

Table of Contents

1. Chapter One: Introduction .. 1

1.1. Background .. 1

1.2. Motivation .. 2

1.3. Aim and Objectives .. 3

1.4. Contributions .. 4

1.5. Thesis Outline .. 5

1.6. List of Publications... 6

2. Chapter Two: Related Work and Concepts .. 7

2.1. Overview .. 7

2.2. Machine Learning .. 8

2.2.1. Overview of Machine Learning .. 8

2.2.2. Artificial Neural Networks ... 11

2.2.3. Decision Tree .. 14

2.2.4. Support Vector Machines ... 15

2.2.5. Gaussian Naïve Bayes... 17

2.2.6. Deep Learning ... 18

• Convolutional Layers ... 25

• ReLU Layer .. 28

• Pooling Layer ... 29

• Fully Connected Layer ... 29

2.3. Intrusion Detection ... 29

2.4. Internet of Things ... 36

2.4.1. Overview of Internet of Things... 36

VII

2.4.2. Challenges in Securing IoT ... 37

2.5. Research Gap Identification ... 39

2.5.1. Signature/Event/Rule Based Intrusion Detection Systems 39

2.5.2. Modelling of Inputs and Attacks on IoT Networks .. 41

2.5.3. Machine Learning Intrusion Detection Systems ... 42

2.6. Datasets .. 46

2.6.1. KDDCUP99 Dataset ... 46

2.6.2. UNSW-NB15 Dataset ... 49

2.6.3. IoT Dataset .. 52

2.7. Time Series ... 55

2.8. Summary .. 58

3. Chapter Three: Comparing the binary classification Performance of Machine Learning

Algorithms in Anomaly Detection on KDDCUP99 and Created IoT datasets 59

3.1. Overview .. 59

3.2. Methodology .. 60

3.2.1. System Overview .. 60

3.2.2. Data Sample .. 62

3.2.3. Performance Evaluation .. 65

3.3. Experimentation ... 66

3.3.1. Gaussian Naive Bayes Model ... 66

3.3.2. Decision Tree Model... 67

3.3.3. Support Vector Machine Model.. 69

3.3.4. Neural Network Model ... 70

3.4. Findings .. 71

VIII

3.5. Summary .. 75

4. Chapter Four: Reducing Anomaly Detection Time in the KDDCUP99 data via

Dimensionality Reduction .. 76

4.1. Overview .. 76

4.2. Methodology .. 77

4.2.1. System Overview .. 77

4.2.2. Selected Features .. 78

4.2.3. Performance Evaluation .. 80

4.3. Experimentation ... 81

4.3.1. Gaussian Naive Bayes Model ... 81

4.3.2. Decision Tree Model... 82

4.3.3. Support Vector Machine Model.. 83

4.3.4. Neural Network Model ... 84

4.4. Findings .. 85

4.5. Summary .. 93

5. Chapter Five: Anomaly Detection and Classification using CNNwGFC 94

5.1. Overview .. 94

5.2. Methodology .. 95

5.2.1. CNNwGFC Model .. 96

5.2.2. GFC Structure ... 97

5.2.3. Datasets ... 99

5.2.4. Experiment Environment .. 101

5.2.5. Evaluation Metrics .. 101

5.3. Findings .. 102

IX

5.4. Summary .. 104

6. Chapter Six: Conclusions and Future Work ... 105

6.1. Conclusions .. 105

6.2. Future Work ... 107

References ... 108

X

Table of Figures

Figure 2-1: The process of supervised learning [15]. ... 9

Figure 2-2: Taxonomy of ML techniques [13]. .. 10

Figure 2-3: Sigmoid Function. .. 12

Figure 2-4: Example of a Neural Network Diagram. ... 13

Figure 2-5: An example of a decision tree. ... 14

Figure 2-6: Support vector machine algorithm [197]. .. 16

Figure 2-7: A taxonomy of DL techniques [123]. .. 20

Figure 2-8: CNNs and computer vision [29] .. 23

Figure 2-9: High-level CNN architecture [29].. 24

Figure 2-10: 3D data input .. 24

Figure 2-11: Convolution layer with input and output volume [29] ... 25

Figure 2-12: The convolution operation [29].. 26

Figure 2-13: Convolution and activation maps [29] ... 26

Figure 2-14: Activation volume output of convolutional layer [29] ... 27

Figure 2-15: Example filters learned [32]. .. 28

Figure 2-16: Growing number of IoT Devices [82].. 36

Figure 2-17: System prototype and testbed [78]. .. 54

Figure 2-18: Sliding Window Model .. 56

Figure 3-1: Middlebox Approach for Capturing IoT traffic. .. 60

Figure 3-2: Data preparation process [198]. ... 62

Figure 3-3: Comparing the accuracy result of the IoT dataset with KDDCUP99. 71

Figure 3-4: Comparing the f1_score result of the IoT dataset with KDDCUP99 dataset. 72

file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185145
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185162
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185164
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185165

XI

Figure 3-5: Comparing the precision score result of the IoT dataset with KDDCUP99 dataset. . 73

Figure 4-1: Middlebox Approach for Capturing IoT traffic. .. 77

Figure 4-2: The difference in accuracy between using all features and the five chosen features. 85

Figure 4-3: The difference in F1-score between using all features and the five chosen features. 86

Figure 4-4: The difference in F1-score between using all features and the five chosen features. 87

Figure 4-5: The difference in recall between using all features and the five chosen features. 88

Figure 4-6: Execution time using all features and the five chosen features. 89

Figure 4-7: The difference in execution time between using all features and the five chosen

features. ... 90

Figure 5-1: CNNwGFC model Training Process.. 95

Figure 5-2: CNNwGFC Model ... 97

Figure 5-3: Global Feature Correlation Structure ... 98

Figure 5-4: Evaluation Metric Results on the KDDCUP99 dataset. .. 102

Figure 5-5: Evaluation Metric Results on the UNSW-NB15 dataset. .. 103

file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185166
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185167
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185168
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185170
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185171
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185173
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185173
file:///C:/Users/ehusaha/Box/PHD/Corrections/HusainAbdulla_ID1824081_Dissertation_V10.6.docx%23_Toc141185177

XII

Table of Tables

Table 2-1: Components of a comprehensive intrusion detection system 31

Table 2-2: Signature and anomaly-based intrusion detection systems: Pros and cons. 34

Table 2-3: Summary of the reviewed binary classification studies related to the use of Machine

Learning in traffic anomaly detection ... 42

Table 2-4: Summary of the reviewed Multi classification studies related to the use of Machine

Learning in traffic anomaly detection. .. 44

Table 2-5: Distribution of the KDDCUP99 training dataset. ... 48

Table 2-6: Distribution of the KDDCUP99 testing dataset. ... 48

Table 2-7: Distribution of the UNSW-NB15 training dataset. ... 50

Table 2-8: Distribution of the UNSW-NB15 testing dataset. ... 51

Table 3-1: Percentage of each Transport/Network protocol type in sample dataset. 63

Table 3-2: Percentage of attack cases in sample dataset. .. 63

Table 3-3: Percentage of each application in sample dataset. .. 64

Table 3-4: Gaussian Naive Bayes Model Classification Results. ... 66

Table 3-5: Decision Tree Classification Results. .. 68

Table 3-6: SVM Classification Results... 69

Table 3-7: ANN Classification Results... 70

Table 4-1: Sample values for the selected features ... 79

Table 4-2: Sample values for the selected features ... 79

Table 4-3: Gaussian Naive Bayes Model Classification Results. ... 81

Table 4-4: Decision Tree Classification Results. .. 82

Table 4-5: SVM Classification Results... 83

Table 4-6: ANN Classification Results... 84

XIII

XIV

List of Abbreviations and Acronyms

Abbreviation Meaning

ANN Artificial Neural Network

ARP Address Resolution Protocol

CNN Convolutional Neural Network

CNNwGFC Convolutional Neural Network with Global Feature Correlation

DoS Denial of Service

DRL Deep Reinforcement Learning

DT Decision Tree

GFC Global Feature Correlation

ICA Independent Component Analysis

IDS Intrusion Detection Systems

IoT Internet of Things

KDDCUP99 Knowledge Discovery and Data Mining 1999

KNN KNN - k-Nearest Neighbors

LSTM Long Short-Term Memory

MLP Multilayer Perceptron Neural Network

MSE Mean Squared Error

NB Naïve Bayes

NIDS Network-based Intrusion Detection Systems

NN Neural Network

PCA Principal Component Analysis

PCAP Packet Capture

RF Random Forest

SNMP Simple Network Management Protocol

SSDP Simple Service Discovery Protocol

SVD Singular Value Decomposition

XV

SVM Support Vector Machine

TCP Transmission Control Protocol

UDP User Datagram Protocol

UNSW-NB15 University of New South Wales-Network-Based 15

1

1. Chapter One: Introduction

1.1. Background

This thesis discusses anomaly detection for the Internet of Things (IoT) networks using machine

learning. This topic includes three key concepts: Anomaly Detection, IoT and Machine Learning.

Anomaly detection is also known as outlier detection and novelty detection at times. It refers to

detecting unusual objects, occurrences, or observations that differ considerably from a bulk of data

and do not correspond to a well-defined typical behaviour [1]. Such occurrences and events may

raise concerns that they were generated by a different method or seem inconsistent with the other

data [2]. The concept of anomaly detection has several applications, including the prevention of

financial fraud and the protection of computer networks from abnormal traffic such as denial of

service attacks and ping of death.

The Internet of Things (IoT) promises an optimistic technological future where the physical world

is integrated with computer-based systems, resulting in economic benefits and efficiency

improvements. The IoT is a network of objects, including devices, home appliances, and vehicles,

which may be embedded with electronics, sensors, and software to connect and exchange data [3].

If a 'thing' is referred to as part of the IoT, it is accessible via the internet. The IoT affects a variety

of industries, including logistics tracking, healthcare, automotive and smart cities. It is expected

that the usage of IoT devices will touch every point of human life.

Machine learning is a subfield of the artificial intelligence field. It is defined as a machine's

capability to predict and make decision like a human. Machine learning is a growing field that uses

computing algorithms intending to mimic human intelligence through learning from their

surroundings [4]. It allows software applications to become more accurate at predicting outcomes.

Bayesian Networks, Support Vector Machines, Neural Networks, and Decision Trees are examples

of machine learning algorithms.

2

1.2. Motivation

Despite the indisputable advantages of the IoT, the fact of the matter is that its security is not

keeping pace. As the IoT becomes more widespread, its heterogeneity and size are projected to

increase existing Internet security vulnerabilities. A wide variety of threats that we now cannot

consider will become apparent once humans, sensors and automobiles can easily connect via IoT.

If essential measures are not taken, hackers will exploit the IoT's evasiveness to disrupt

communications, achieve substantial financial gains, or physically harm people. For instance,

substantial vulnerabilities are found in many IoT baby monitors [5], which hackers might exploit

to carry out a variety of illegal acts, such as allowing other users to observe and operate the monitor

remotely. Another recent discovery has demonstrated that Internet-connected automobiles can be

remotely controlled [6], enabling the driver to perform things such as open doors and even turn off

the vehicle's engine while it is in motion. Moreover, there are alarming incidents of IoT hacking

that may extend to medical equipment and can have a devastating effect on patients [7, 8]. Another

critical point is that most present security countermeasures are computationally intensive and

significantly overhead [9]. However, price limits force IoT devices to have restricted memory and

computing capability and use small, affordable batteries for energy storage.

To prepare for a future in which the IoT is everywhere and accessible from anywhere, it is more

necessary than ever to address significant IoT security concerns. One of the Internet security

challenges for IoT devices is anomaly detection. Many negative consequences might result from

an abnormal attack on today’s highly linked and interconnected network environment. Artificial

intelligence’s growth has led to machine learning’s use in anomaly detection.

3

1.3. Aim and Objectives

This study aims to improve security in IoT networks by enhancing existing anomaly detection

techniques using machine learning. This research will incorporate the following objectives:

• O1: Identify the challenges and research gaps in securing the Internet of Things networks.

• O2: Test the anomaly binary classification (normal/abnormal) performance of the

following machine learning algorithm on a real IoT dataset and compare the results with

the commonly used dataset from the literature (KDDCUP99): Neural Networks (NN),

Gaussian Naive Bayes (NB), Decision Trees (DT), and Support Vector Machine (SVM).

• O3: Reduce the number of features (input size) required to detect anomalies in IoT

networks.

• O4: Develop an enhanced deep learning model based on CNN to detect and classify

anomalies in IoT networks.

4

1.4. Contributions

Here is a list of the contributions to the literature:

1. Identified the challenges and the gaps related to securing the Internet of Things

networks. The challenges are network size, the number of devices, the human factor as well

the complexity of the IoT networks. The gaps identified include the lack of research on the

following:

o Signature-based intrusion detection systems use for anomaly detection.

o Modelling input parameters required for anomaly detection in IoT networks.

o Comparison of the performance of machine learning algorithms on the KDDCUP99

and a real IoT dataset [78].

o High performance machine learning model to classify anomalies in the IoT

networks.

2. Tested the binary classification performance including accuracy, precision and F1 Score of

the Neural Networks, Gaussian Naive Bayes, Support Vector Machine, and Decision Trees

machine learning algorithms and compared their results with the Knowledge Discovery

and Data Mining 1999 (KDDCUP99) dataset. The results showed that Support Vector

Machines and Gaussian Naive Bayes performs lower than the other models.

3. Reduced the number of features required by machine learning algorithms for anomaly

detection in the IoT networks from 41 to 5 features only, which resulted in reduced

execution time by an average of 58%.

4. Tested the CNNwGFC, which is an enhanced Convolutional Neural Network model, in

detecting and classifying anomalies in IoT networks. This model archives an increase of

9% in the accuracy for IoT anomaly detection in the University of New South Wales-

Network-Based 15 (UNSW-NB15) compared to the classic Convolutional Neural

Network. The CNNwGFC multi classification accuracy (96.24%) is higher by 7.16 than

the highest from the literature [195].

5

1.5. Thesis Outline

In addition to the Introduction chapter, this thesis includes five other chapters. Here is an overview

of each chapter:

• Chapter 2 provides an overview of machine learning algorithms, challenges in securing

IoT devices, related studies on the use of Machine Learning in anomaly detection, the gap

in research in anomaly detection for IoT networks and an overview of datasets used in this

research.

• Chapter 3 tests the binary classification performance of the following Machine Learning

algorithms in anomaly detection on the KDDCUP99 and created IoT datasets: Neural

Networks, Gaussian Naive Bayes, Decision Trees, and Support Vector Machine.

• Chapter 4 reduces the input size of the KDDCUP99 dataset to five features only and

compares the binary classification performance results with Chapter 3.

• Chapter 5 tests the CNNwGFC model, which is an enhanced Convolutional Neural

Networks model, in detecting and classifying anomalies in network traffic data.

• Chapter 6 includes a summary of the findings of this research.

6

1.6. List of Publications

The following papers were accepted for publication:

• H. Abdulla, H. Al-Raweshidy and W. S. Awad, “ARP spoofing detection for IoT

networks using neural networks”, SSRN Electronic Journal, July 24, 2020.

• H. Abdulla, H. Al-Raweshidy and W. Awad, “The Era of Internet of Things: Towards

better security using machine learning”, in International Conference on IT Innovations

and Knowledge Discovery 2023, 2023.

• H. Abdulla, H. Al-Raweshidy and W. Awad, “Denial of Service Detection for IoT

Networks Using Machine Learning”, in International Conference on Agents and

Artificial Intelligence 2023, 2023.

At the time of writing, the following papers were submitted for review:

• A journal paper titled “CNNwGFC: An Enhanced CNN Model for Network Traffic

Anomaly Detection and Classification” submitted to IEEE Access on 30th January 2023.

7

2. Chapter Two: Related Work and Concepts

2.1. Overview

This chapter aims to identify the gaps related to anomaly detection in IoT networks. First, it details

the Machine Learning algorithms used in this research, including Artificial Neural Networks,

Decision Trees, Support Vector Machines, Naïve Bayes and Convolutional Neural Networks. It

defines two concepts related to the research topic: Intrusion Detection and Time Series. It describes

the Internet of Things concept and its security challenges. It describes the public data sets used in

this thesis, including KDDCUP99, UNSW-NB15 and a real IoT dataset [78]. Finally, this chapter

is concluded with a summary of its contents.

8

2.2. Machine Learning

2.2.1. Overview of Machine Learning

Machine learning is a branch of artificial intelligence that enables a computer to learn how to create

output without being explicitly programmed [10]. Machine learning technology is commonly used

for data analysis to construct prediction models. The popularity of machine learning stems from

the fact that it should do two different jobs. First are the tasks that machines can perform, followed

by those that are impossible for humans to execute. Some academics divide the process of machine

learning into two parts: learning and prediction. The learning element concerns feeding the

machine learning algorithm with the training data, while the prediction element concerns

the machines' predictions. Supervised and unsupervised learning are the two most typical types of

machine learning.

• Supervised Learning

Supervised machine learning is used when a dataset has labelled data. Supervised learning aims to

train the computer to predict values accurately or classify an input example. Classification and

regression are the most popular products of supervised learning [11].

• Unsupervised Learning

Unsupervised learning aims to describe hidden patterns from input data. Unsupervised learning is

used when a labelled dataset is not available. Sometimes, unsupervised learning is used to

categorize unlabelled datasets, and the resulting labelled dataset is used for supervised learning.

Dimensionality reduction and clustering are two common examples of unsupervised learning [12]

As this research is done on a labelled dataset, it is opted to employ supervised learning for this

thesis. A model of class label distribution is trained using supervised learning algorithms, and this

model can predict class labels for testing samples. Figure (2-1) is an example of a process flowchart

for supervised learning algorithms; this whole procedure is also known as classification, which

9

forms the basis for the created prediction model. It is crucial to choose the appropriate

classification model for a given task.

Figure 2-1: The process of supervised learning [15].

10

The supervised learning algorithms include the following categories: Regression and

Classification, as shown in Figure (2-2).

Since the problem targeted in this research is a classification problem (Normal/Abnormal Traffic),

classification machine learning algorithms are used. According to [14] [15], supervised machine

learning algorithms, which are mainly used for classification, include: Random Forest (RF), Naive

Bayes Classifier, Logistic Regression, Linear Classifier, Neural Networks, K-Means Clustering,

Boosting, Perceptron, Decision Tree, Support Vector Machines, Quadratic Classifiers; Bayesian

Networks. Among the classification-supervised machine learning algorithms, the following are the

best suited for anomaly detection according to [16][17]: Neural Networks, Support Vector

Machines, Naïve Bayes, Decision Trees, and Deep Learning. These algorithms are reviewed in the

following sub-sections.

Figure 2-2: Taxonomy of ML techniques [13].

11

2.2.2. Artificial Neural Networks

Artificial Neural Network (ANN) is a supervised machine learning method proposed fifty years

ago. ANN are a type of machine learning algorithm that mimics the structure and function of the

human brain. They analyse data by grouping raw input, identifying patterns, and labelling

information. Since neural networks can only process numerical data, real-world input such as

images, text, and sounds must be converted into numerical format before being analysed by the

network [18]. The two main parts of a neural network are:

• Connections (weights): These are the links between the neurons in a neural network and

hold values that are adjusted during the training process.

• Neurons (nodes): Neurons receive inputs from other neurons via the connections, which

have weight values. They multiply them by their corresponding weights and sum them up

as shown in Equation (2-1). This result is then passed through an activation function, which

determines whether the neuron "fires" or not. This process is mathematically represented

in Equation (2-1). The output of this process, Y, is then processed by the activation function

(2-2).

𝑌 = ∑(𝑖𝑛𝑝𝑢𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠 (2-1)

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑌) (2-2)

Fire means to activate; the word is derived from the brain's fundamental processes. One neuron

must have an activation function for the binary classification task. The Sigmoid function is an

example of an activation function. The equation for the sigmoid function is:

f(z) = 1 / (1 + exp(-z)) (2-3)

12

where:

• f(z) is the output value between 0 and 1,

• z is the input to the sigmoid function, which can be any real number,

• exp() is the exponential function, and

• 1 / (1 + exp(-z)) is the formula that maps z to the range (0, 1).

Figure (2-3) shows a Sigmoid function graph.

Figure 2-3: Sigmoid Function.

According to [19], a simple neural network or multi-layer perceptron consists of 3 layers as shown

in Figure (2-4):

• Input Layer: It is the first layer and responsible for receiving external data.

• Hidden Layer: It is located between the input layer and output layer to transform the input

data into output.

• Output Layer: It is the last layer in a neural network to provide the output.

13

Figure 2-4: Example of a Neural Network Diagram.

Using the backpropagation formula, the weights of neurons inside each layer are adjusted [20].

Equation (2-3) shows the back-propagation formula: 𝑊 is the change in the edge weight at time 𝑡

(or 𝑡 − 1 for the previous iteration), alpha is the learning rate, and the gradient is the derivation

within fraction.

∆𝑊𝑡 = 𝛼 ∗
𝜕𝑀𝑆𝐸

𝜕𝑊𝑡
+ 𝜇 ∗ 𝑊𝑡−1 (2-4)

During training, loss functions are used to calculate the loss between the predicted variable and

the output, hence assisting in the training of a neural network [19]. The Mean Squared Error (MSE)

function, seen at Equation (2-4), is a loss function. 𝑦�̂� is the predicted result, and 𝑛 is the number

of output classes, 𝑦𝑖 is the outcome of the learning process.

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦�̂� − 𝑦𝑖)2𝑖=1

𝑛 (2-5)

14

2.2.3. Decision Tree

A Decision Tree (DT) demonstrates how to make a decision based on a specific attribute collection.

Figure (2-5) shows that a decision tree has internal decision nodes and terminal leaves. Each

decision node, y, implements 𝑓(𝑦(𝑥)) function with binary outcomes to label the branches by the

function output. Any given Decision Tree is fully deterministic; however, specific algorithms may

modify their trees based on extra information [21].

Figure 2-5: An example of a decision tree.

The construction of a Decision Tree is a form of supervised learning. It aims to understand the

significance of each piece of data by treating the response as a series of bits. As the most

informative feature is placed at the root of the tree, a decision tree uses a heuristic to determine

which attribute is the most informative. The heuristic used to identify the most informative feature

is based on information theory, which is a method to calculate the amount of information present

in data, regardless of its meaning. Therefore, a one-bit response encapsulates one bit of information

15

about yes/no. Decision trees rely on the data's order, and the tree's optimality is susceptible to

change when the order of the data is altered [22]. Nonetheless, the used heuristic is intended to

minimize this difference.

2.2.4. Support Vector Machines

Support Vector Machine (SVM) is a technique for supervised machine learning that allows

Regression and Classification [23]. SVM plots data points in n-dimensional space, where n is the

number of features. The classification is completed by finding an appropriate hyperplane that

distinguishes between two classes. In n-dimensional space, the dimensions of the hyperplane are

(n-1).

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 = 𝛽0 + ∑ 𝛽𝑖\𝑥𝑖𝑛
𝑖=1 (2-6)

• β0 is the bias term (also known as the intercept) in the SVM decision function.

• β1, β2, ..., βn are the coefficients corresponding to the features x1, x2, ..., xn, respectively,

in the SVM decision function.

• x1, x2, ..., xn are the input features (also known as independent variables) of the data point

to be classified.

• The symbol Σ (sigma) represents the summation notation, indicating that we are summing

the products of each coefficient βi with its corresponding feature xi from i = 1 to n.

SVM assumes that classes are linearly distinguishable [24]. The equation's sign helps classify

classes, while the magnitude aids in determining the distance between the observation and the

hyperplane. The class assignment accuracy increases when the magnitude is high. Margin refers

to the minimal distance of data points from the hyperplane to either class. A maximal margin is

needed so that the magnitude will be high. This hyperplane is hence known as the Maximum

Margin Classifier. Support Vectors are the observations that lie on or violate the hyperplane's edge.

16

Support Vectors assist the hyperplane. SVM has a maximum margin classifier with a soft margin

(some observations can violate this margin) as shown in Figure (2-6).

Figure 2-6: Support vector machine algorithm [197].

17

2.2.5. Gaussian Naïve Bayes

The Gaussian Naïve Bayes (NB) model is a Bayesian probability model that has been dramatically

simplified [25]. This model evaluates the likelihood of an outcome given a variety of evidence

factors. Given that the outcome happens, the model encodes both the likelihood of the result and

the probability of the evidence variables. It is expected that the likelihood of one evidence variable,

provided that the end result happens, is independent of the probabilities of other evidence

variables, given that the final result occurs.

The Bayes theorem gives a method for computing the posterior probability [26], 𝑃(𝑐|𝑥), using

the prior probabilities, 𝑃(𝑐), 𝑃(𝑐𝑥), and 𝑃(𝑥|𝑐). A Naive Bayes classifier assumes that the

influence of a predictor's value (x) on a given class (c) is independent of other predictor values.

This hypothesis is known as class conditional independence.

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 (2-7)

𝑃(𝑐|𝑥) = 𝑃(𝑥1|𝑐) × 𝑃(𝑥2|𝑐) × … . .× 𝑃(𝑥𝑛|𝑐) × 𝑃(𝑐) (2-8)

• 𝑃(𝑐|𝑥), represents posterior (the updated) probability of targeted class given predictor

(features).

• 𝑃(𝑐) represents the current probability of targeted class.

• 𝑃(𝑥|𝑐) quantifies the probability of a predictor (features) given a desired class, also known

as the likelihood.

• 𝑃(𝑥), represents the current probability of predictor (features).

18

2.2.6. Deep Learning

Machine learning's deep learning subfield is inspired by how the brain works, particularly the

neural networks that make up the brain [124]. It involves training complex artificial neural

networks on large amounts of data, allowing the network to learn and make intelligent decisions.

It has been the driving force behind many advancements in various fields, including voice

recognition, computer vision, and natural language processing [125]. It has also been used to

improve machine learning techniques and contributed to developing self-driving cars, intelligent

personal assistants, and machine translation services.

One key difference between deep learning and traditional machine learning is the level of human

involvement. In traditional machine learning, the feature engineering process (i.e., extracting

useful features from raw data) is done manually by the data scientist. In deep learning, the neural

network can automatically learn relevant features from the data [126]. This means that deep

learning requires less human intervention and more data and computational power. Another

difference is the type of tasks that each approach is suited for. Deep learning is particularly

effective for tasks that involve unstructured data, such as image and speech recognition, while

traditional machine learning algorithms are better suited for structured data [127].

There are several reasons why deep learning has become popular in recent years [128]:

• Performance: Deep learning models can achieve state-of-the-art performance on a wide

range of tasks, such as image and speech recognition.

• Automated feature engineering: Deep learning models can learn useful features from raw

data automatically without the need for manual feature engineering.

• Ability to learn from unstructured data: Deep learning models can learn from unstructured

data such as images, text, and audio, which is difficult for traditional machine learning

models.

• Scalability: Deep learning models can be trained on very large datasets, allowing them to

learn complex patterns.

19

• Availability of hardware: The proliferation of GPUs has made it much easier to train deep

learning models, as they can be trained much faster on GPUs than on CPUs.

• Improved performance: Deep learning algorithms have been shown to outperform

traditional machine learning algorithms in a wide range of tasks, such as image recognition,

speech recognition, natural language processing, and game playing.

• Big data: Deep learning algorithms are particularly effective for large and complex

datasets, which are becoming increasingly common in many fields, such as healthcare,

finance, and social media.

• Advances in computing power: The availability of powerful GPUs and distributed

computing systems has made it possible to train large deep learning models efficiently,

which was not possible just a few years ago.

• Open-source software: Many deep learning frameworks and tools, such as TensorFlow,

PyTorch, and Keras, are open-source and freely available, making it easier for researchers

and developers to experiment and innovate.

As shown in Figure (2-7), there are several deep learning models, such as:

• Convolutional neural networks (CNNs): These are often used for image and video

recognition jobs. They are intended to handle data having a grid-like architecture, such as

an image, and excel at discovering spatial hierarchies of characteristics.

• Recurrent neural networks (RNNs): These are used for sequential data-based tasks, such

as language modelling and machine translation. They are able to analyse temporal data,

such as a time series or a natural language phrase.

• Generative adversarial networks (GANs): These are used to generate synthetic data that is

similar to a given training dataset. A generator and a discriminator are two neural networks

that are used in the GAN and are taught to compete with one another. Both the generator

and the discriminator work to generate synthetic data that is indistinguishable from the real

20

thing, while the discriminator attempts to determine whether or not a particular sample is

genuine or synthetic.

• Autoencoders: These are used for dimensionality reduction and feature learning. They are

trained to reconstruct their input data using a smaller number of dimensions, which allows

them to learn a compact representation of the input data.

• Deep Reinforcement Learning (DRL): is a subfield of machine learning and artificial

intelligence that combines deep learning techniques with reinforcement learning principles.

It involves training agents to make decisions in an environment by interacting with it and

receiving feedback in the form of rewards or penalties. The goal of the agent is to learn an

optimal policy, which is a mapping from states to actions, that maximizes the cumulative

rewards over time.

Figure 2-7: A taxonomy of DL techniques [123].

21

Deep learning can be effective for anomaly detection because it can learn and recognize patterns

in data [129]. This can be particularly useful in cases where normal behaviour is complex and not

easily captured by simple rules or thresholds. For example, in a network intrusion detection system,

the normal behaviour of a network may be very complex. It may depend on many factors, such as

the traffic type, the traffic's source and destination, and the time of day [130]. A deep learning

model could learn to recognize the normal traffic patterns in a network and flag any deviations

from those patterns as potential anomalies. Another advantage of deep learning for anomaly

detection is that it can learn from unstructured data, such as images or time series data. This is

useful in cases where the data is not easily represented in a structured format or where many

features exist.

22

In network anomaly detection, both RNNs and CNNs could be helpful; however, CNN performs

better than RNNs in anomaly detection in classification [122]. One reason a CNN might be a good

choice for network traffic anomaly detection is that it can learn to recognize traffic data patterns

indicative of normal behaviour. For example, a CNN could be trained on a large dataset of normal

network traffic and learn to recognize the patterns and features that are characteristic of normal

traffic. It could then be used to identify deviations from those patterns as potential anomalies.

Another reason is that CNNs can be trained on very large datasets, which can be beneficial for

learning complex patterns in the data. This is particularly useful in cases where normal behaviour

is complex and not easily captured by simple rules or thresholds.

Overall, deep learning has the potential to revolutionize many fields by allowing machines to learn

and make intelligent decisions on their own. Deep learning can be a powerful tool for anomaly

detection, particularly in cases where normal behaviour is complex and cannot be easily captured

by simple rules or thresholds. CNN has the potential to be the type of deep learning technique that

suits anomaly detection; hence it is detailed further in the following sub-section.

A) Convolutional Neural Network

Convolutional neural networks (CNN) are used to capture high-level features in combination with

local spatial features. CNN is often effective with structured and spatially correlated data [27].

When it comes to object detection in photos, they excel. CNN may also be used to analyse words

as separate textual units and to do character recognition text analysis. CNN also works effectively

with speech data. CNN is most recognised for image recognition [28]; however, nowadays, CNN

23

is utilised in various applications, including autonomous vehicles, robots, and drones. Figure (2-

8) depicts the application of CNNs in computer vision.

Figure 2-8: CNNs and computer vision [29]

In comparison with natural networks, CNN scales well with data extracted from images. CNN

allows data of images to modify the architecture of its network. Using CNNs, neurons may thus

be arranged in three dimensions utilising length, height, and depth. These dimensions can be

translated to the image's width pixel, height pixel, and RGB channels. CNNs convert the input

24

picture via a series of interconnected layers and produce a set of class probabilities. As seen in

Figure (2-9), all CNN designs have several common layers.

Figure 2-9: High-level CNN architecture [29]

Figure (2-10) shows data loading into the input layer in CNN. For example, the input layer

accepts the following dimensions of image data (RGB channel, width, height)

Figure 2-10: 3D data input

25

CNN consists of several layers. The Convolutional Layer, Rectified Linear Unit (ReLU) Layer,

Pooling Layer, and Fully Connected Layer are examples of these layers [30]. Following a detailed

explanation of these layers.

• Convolutional Layers

The convolutional layer is the main component of the CNN architecture. Convolution layers alter

the picture by adding a filter or kernel to the input image. This layer generates the feature map by

computing a dot product between the region of neurons in the input layer and the filters [31]. Figure

(2-11) shows the Convolution layer's input and output volumes.

Figure 2-11: Convolution layer with input and output volume [29]

26

As seen in Figure (2-12), the convolutional layer output has the exact dimensions as the input.

Figure 2-12: The convolution operation [29]

The filter or kernel has smaller sizer than the input size, as shown in Figure (2-12). It applies the

supplied stride value to the input data in order to produce complex convoluted features. Feature

detector is a common name for this technique. Along the depth dimension, the feature map of each

filter (shown in Figure 2-13) is added to form the 3D output. Therefore, each filter learns to

recognise a certain characteristic. This filter's two-dimensional activation map is generated by

sliding the filter across the input.

Figure 2-13: Convolution and activation maps [29]

27

Output volume is determined by the staked activation maps. The activation volume values

represent neuronal outputs that encompass a tiny portion of the input volume as shown in Figure

(2-14).

Figure 2-14: Activation volume output of convolutional layer [29]

The receptive field is the area on the neurons that activates them to send information to other

neurons. It is used to specify the filter map size. For example, if the filter size is set to 6 x 6 x 4,

then the number of weights coming for an output layer neuron is 6 x 6 x 4= 144. CNN uses

parameter-sharing to restrict the number of parameters which reduces training time. Each filter

learns a single specific feature. As seen in Figure 2-15, once a filter has learned a feature, such as

a horizontal line, in one region of the input, it does not need to learn it again for another place in

the picture, making CNN's position invariant.

28

Figure 2-15: Example filters learned [32].

• ReLU Layer

This layer employs the ReLU function as a neuron output for the following input x, 𝑓(𝑥) =

𝑚𝑎𝑥 (0, 𝑥). CNNs with ReLUs need less time to train than their counterparts with tanh function

[33]. The equation for the tanh function is:

tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) (2-9)

where:

• tanh(x) is the output value between -1 and 1,

• x is the input to the tanh function, which can be any real number,

• exp() is the exponential function, and

• (exp(x) - exp(-x)) / (exp(x) + exp(-x)) is the formula that maps x to the range (-1, 1).

ReLU is also advantageous since it does not need normalised inputs. Inputs with positive values

indicate that these neurons are learning. Thus, local response normalisation aids in error rate

reduction.

29

• Pooling Layer

After each convolutional layer, pooling layers are added. In order to minimise the spatial size of

the feature maps, the pooling layer combine the output of neighbouring neurons within the same

filter or map. Pooling layers reduce the dimensions of the feature maps and aid in preventing

overfitting [34]. Each pooling provides a summary of the coverage area. Max pooling employs the

max() function to spatially resize input. Using a 2 x 2 filter as an example, max() selects the biggest

of the four results. The outcome is a condensed map of features.

• Fully Connected Layer

Using the input data, this layer calculates the probability of the data classes. A vector of N values

is the output where each value reflects the likelihood of one of N output classifications.

2.3. Intrusion Detection

Every action taken to compromise the security, privacy, or availability of a resource is considered

an intrusion [35]. The National Institute of Standards and Technology (NIST) offers a

comprehensive document of standards for Intrusion Detection Systems. Effective intrusion

detection is a challenging and elusive objective for system administrators and researchers in

information security. The complexity of computer systems, the diversity of potential

vulnerabilities, and the expertise of attackers combine to produce a problem domain that is

exceedingly difficult to solve [36]. An intrusion occurs when a user gains unauthorised access,

attempts to get such access, or makes malicious use of information resources. Anomaly intrusions

and misuse intrusions are the two categories of intrusion.

Therefore, traditional intrusion detection has concentrated on anomaly or misuse detection.

Anomaly detection seeks to identify user or group behaviours that differ from normal patterns.

Typically, it involves the development of knowledge bases based on profiles of previously

observed actions. Generally, one of the following methods is used to detect anomalies [37]:

30

• Threshold detection, which detects abnormal activity on the server or network, such as

abnormal CPU usage on a single server or abnormal network congestion.

• Statistical measures, from statistical analysis of historical values.

• Rule-based measures, with expert system support

• Non-linear algorithms, include Neural Networks and Genetic Algorithms.

Misuse detection is the second method, and it works by contrasting a user's activities with the

patterns associated with malicious actors trying to get into a system [38]. Misuse detection uses a

rule-based methodology, whereas anomaly detection often uses threshold monitoring to identify

instances. Typically, one of the following techniques is used to detect misuse [39]:

• Expert systems providing a set of attack-description rules.

• Signature verification in which attack scenarios are converted into audit event sequences.

• Petri nets, where pictorial Petri nets depict known attacks.

• State-transition diagrams, which express attacks as a sequence of objectives and transitions.

Expert systems, on the other hand, are notoriously rigid, with even little changes to an attack

sequence having a major impact on the activity-rule comparison and therefore evading detection.

Because of this weakness, particular solutions have been developed to further abstract the rule-

based approach, hence decreasing the granularity of the intrusion detection process [40].

Using the log data generated by specialised software, such as firewalls or the operating system, is

the most common method for detecting intrusions. A manual examination of these records may

suffice to detect intruders. Even after an attack, it is simple to analyse the data to assess the level

of damage. This investigation is also crucial for finding intruders and documenting their attack

patterns for future detection. A well-designed IDS can be employed to investigate audit data for

such insights and is a valuable information system tool. The process of anomaly detection involves

the creation of a typical activity profile for each user and the identification of any deviations from

that profile that may represent efforts at intrusion. Generation of signatures that include all possible

31

attacks in order to avoid false negatives and signatures that do not match nonintrusive actions in

order to avoid false positives is a crucial component of the process of detecting misuse of a system.

On the other hand, false negatives are sometimes seen as being a more significant issue. The

determination of threshold values is very necessary in order to guarantee that none of the

previously described challenges will be exaggerated bay an excessive amount of value [41].

A variety of IDS commercial tools are generally accessible to security professionals nowadays.

The majority of them concern the abuse detection model. As previously stated, the key problem

with such systems is their lack of adaptability. Therefore, they are incapable of identifying new,

unknown, or unique behaviour and require frequent vendor updates. A complete network security

system will include the following three core security components: prevention of attacks, detection

of attacks, and reaction to attacks [42]. Table (2-1) displays these constituents.

Table 2-1: Components of a comprehensive intrusion detection system

Prevention

• Guarding against illegitimate users.

• Removing application bugs.

• Updating protocol implementation.

• Stronger passwords.

• Antivirus.

• Firewalls

Detection

• Network-based IDS.

• Anomaly based.

• Host-based IDS.

• Signature based.

Reaction

• Terminating active network

connections.

• Source traceback.

• Filtration.

• Reconfiguration.

32

• Rate limiting.

• Prevention

The objective of the preventative phase is to strengthen the system's overall security by

installing appropriate security devices, eliminating application defects, upgrading protocol

implementation, and enhancing the security of all Internet-connected PCs. In prevention, the

network administrator implements preventative measures to protect the system from

unauthorised users. Although it is impossible to avoid all attacks, the objective is to make DoS

attacks more difficult to execute [43].

33

• Detection

A proper phase of attack detection should involve a defence system's response. Every attack

detection technique aims to identify intrusions before they cause considerable damage. An

intrusion is any unauthorized attempt to access, falsify, modify, or remove information in order

to make a system unreliable [44]. A good system can rapidly and with a low percentage of

false positives detect attacks. Researchers are making more frequent attempts to

develop intrusion detection systems in response to the rising number of attacks (IDSs). The

sensor, the analyzer, and the user interface are the primary components of an IDS [45]. The

capability of such a system to offer an overview of malicious activity as well as warnings that

notify network managers and speed up the response time is the most essential aspect of such a

system.

There are two primary types of intrusion detection systems (IDSs) known as signature-based

detection and anomaly-based detection. If the monitored traffic matches the signatures in the

IDS's database, the system will detect the attack. Signature-based methods are often more

efficient and generate fewer false positives, but they require prior knowledge of breaches,

leaving a network system vulnerable to new attacks until the signature database is updated.

Anomaly-based IDSs detect intrusions by identifying abnormal patterns that deviate from

normal behaviour, allowing them to detect new or modified attacks. Table (2-2) highlights the

advantages and disadvantages of different detection methods [46]. Hybrid detection systems

are a combination of both signature-based detection and anomaly-based detection, where the

attack signature database is updated with information about anomalies found during the

detection phase.

34

Table 2-2: Signature and anomaly-based intrusion detection systems: Pros and cons.

 Signature-based Anomaly-based

Pros • Identity known attacks effectively

• Detailed analysis of contextual

factors

• Identity new vulnerabilities

effectively

• Enhance privilege abuse detection

Cons • Ineffective against new attacks and

known attacks variations.

• Difficult maintain updates of

signatures.

• Maintaining knowledge extraction

is costly and time-consuming.

• Observable events are frequently

changing which results in weak

accuracy of normal profiles.

• Ineffective when recreating behaviour

profiles

There are several strategies and methodologies associated with each category of intrusion detection

systems, such as rule-based approaches, statistical measurement, and threshold detection methods

[47]. An example of such a methodology is threshold detection, wherein the user determines the

amount of network traffic that exceeds a certain threshold. Any measurable deviation from these

parameters is considered an intrusion., which therefore causes the alarm to be triggered by the

system. In sensor networks, this kind of method is rather standard. The detection method raises an

alert for an occurrence when the sensory inputs are greater than a previously determined threshold

value [48].

Similarly, a statistical technique determines the typical traffic patterns of network traffic, and an

alert is issued if these patterns change significantly. On the other hand, rule-based systems have

predetermined sets of rules. A rule-based classifier is activated when detecting a match between

an input record and a system rule. Ultimately, evolutionary computation techniques have become

an essential tool in numerous research endeavours in this subject, but improvements are expected.

These techniques are often used in conjunction with rule-based methods to learn normal and

abnormal behaviour [49]. SVM, NB, DT, ANN and CNN are examples of artificial intelligence

approaches used to address intrusion detection issues [50].

35

There are two distinct categories of IDSs, classified by the kind of data used for intrusion detection

[51]. Two common types of intrusion detection systems are host-based (HIDS) and network-based

(NIDS). A HIDS is a host-based intrusion detection system, therefore it only monitors activities

on a single computer system at a time. As a result, HIDS protect essential computers that could

hold confidential information. On the other hand, NIDS is not limited to packets that are intended

for a particular host; rather, it protects all computers that are connected to the network. A network

intrusion detection system (NIDS) is responsible for keeping an eye on and analysing all of the

data coming from a network. Correlators are used to prioritise warnings from several detection

systems in order to limit the amount of human intervention that is required and to combine the

advantages of host-based and network-based IDSs. Correlators are able to do an analysis on

warnings as well as comparable group alerts and assign priority depending on the degree of the

danger posed to a key resource. This method may be helpful to analysts in spotting possible risks

since it reduces the amount of data that they are needed to analyse [52].

• Reaction

When an attack is expected, it is necessary to develop reaction mechanisms. The first benefit of an

intelligent reaction strategy is that attack traffic uses less bandwidth. The second benefit is that

attack flow packets are kept separate from normal flow packets. During the filtering phase, it must

make sure that only attack traffic is filtered and that normal traffic is not changed [53]. Combining

any detection technique with one or more response mechanisms is viable to achieve improved

results [54]. There are many different response techniques that have been reported in the literature.

Some of these tactics include terminating active network connections, filtering, designing and

implementing new rules, and following tracebacks. Both active and passive defences may be used

in response to an attack. The reaction mechanism in an active system provides a response to attack

traffic at the same instant that it is received. On the other hand, the attack traffic record is analysed

in a passive manner in passive mode [55] to discover the attack sources.

36

2.4. Internet of Things

2.4.1. Overview of Internet of Things

The Internet of Things (IoT) is a significant technological advancement that is affecting our daily

lives. According to sources [79] [80], the number of devices classified as IoT was approximately

27 billion in 2017, and this number is projected to increase to 75 billion by 2025 as shown in

Figure (2-16). These devices will be collecting more than 180 zettabytes of data.

The Internet of Things (IoT) is a network of interconnected objects, such as devices, home

appliances, and vehicles, that have embedded electronics, sensors, and software to enable them to

connect and exchange data. According to [81], any "thing" that is part of the IoT can be reached

and controlled through the cyber world. These capabilities make IoT devices more useful and

convenient to use.

The Internet of Things (IoT) devices have a wide range of applications, including smart home

technology and its associated gadgets such as Radio Frequency Identification (RFID), smart locks,

smart meters, wireless sensors, wearable devices, security cameras, smart plugs, Machine-to-

Machine (M2M), and Machine-to-Human (M2H) technology. It is believed that the usage of IoT

devices will eventually touch every aspect of human life.

Figure 2-16: Growing number of IoT Devices [82].

37

2.4.2. Challenges in Securing IoT

Although the IoT incorporates aspects found in earlier computer networking paradigms, the IoT

creates an entirely new situation and, thus, significant research difficulties, particularly in the

security arena. The following points describe why unique and disruptive IoT security research

should be pursued soon [83].

A) Network Size and Number of Devices

The existing strategies and technology for cybersecurity were never intended to scale up to the

level of tens of billions of devices [84], which means that securing the networks that make up the

IoT will be a huge problem. In addition, the strict spending restrictions imposed by IoT

manufacturers impose a restricted amount of memory and computing capabilities in IoT devices,

in addition to the utilization of affordable compact batteries. Most significantly, because it will be

difficult or perhaps impossible to replace the batteries in these devices (for instance, when the

sensors are installed on streetlight poles [85] or when they are implanted within the human body

[86]), this procedure will be costly and critical. As a direct consequence of this, increasing energy

efficiency is of the utmost importance. A large number of devices and the limited computing,

memory, and energy capabilities of IoT devices [87] make it very important to come up with and

use new scalable security mechanisms that can do their tasks without putting too much of a burden

on IoT devices' capacity to compute or store information.

B) Human Factor

One of the most transformative aspects of the Internet of Things will be the seamless connectivity

between humans and machines. Machine learning and artificial intelligence recent developments

will make it possible for the IoT to learn and adapt to our individual tastes and ways of living in

our homes, workplaces, and when we are traveling. Small sensors can flawlessly distribute drugs

[88] and collect physiological data [89] remotely, giving physicians a comprehensive view of our

health condition.

38

On the other hand, if criminals or other unauthorized third parties can get the information that we

provide about ourselves, our houses, or our companies, then we may be putting ourselves in a

position where we are vulnerable. As a result, protecting personal information and restricting

unauthorized access have become essential features of the IoT. The fact that people are now the

primary participants in the sensing process raises another issue about the Internet of Things. There

is a lack of assurance that humans will produce valid information, for instance, if they are reluctant

or unable to do so [90]. This is because there are many factors that may influence human behaviour

In order to solve this significant issue, innovative trust and reputation systems that can be scaled

to accommodate billions of individuals will be necessary.

C) Complexity

The IoT is a complex ecosystem that will connect humans, machines, handheld electronic gadgets,

and other commonplace items into a massively interconnected network. Because there is such a

wide variety of devices, there will be multiple protocols, algorithms, and standards for the IoT.

This will be especially true in the realm of networking. The majority of the IoT is still dependent

on legacy, proprietary technologies. This has led to the creation of an anti-paradigm that is known

as the "Intranet of Things" [91]. While some companies are moving toward more open IoT

protocols like MQTT and the Internet Engineering Task Force (IETF) protocol stack for limited

IoT devices [92], the vast bulk of IoT is still built on incompatible, older infrastructure. In addition,

most previous research has assumed that the link between the Internet of Things' resources and the

real-world things surrounding it is unchanging. On the other hand, the Internet of Things

environment is highly heterogeneous and dynamic due to the unpredictable mobility of IoT

devices, which results in abrupt changes in communication capabilities and position over time

[93]. This is because IoT devices can be located anywhere in the world. In this kind of

environment, fixing accessibility issues with the Internet of Things devices might be challenging.

39

2.5. Research Gap Identification

Specific essential research difficulties in the realm of IoT security still need to be explored, despite

the networking community's growing interest in the topic of IoT security. An overview of the

issues and an investigation of them is provided below:

2.5.1. Signature/Event/Rule Based Intrusion Detection Systems

Stephen and Arockiam [94] proposed a hybrid lightweight and centralized method for detecting

Sybil attacks and Hello Flood in IoT networks that use the Routing Protocol for Low-Power and

Lossy. Their method utilizes an IDS agent, which calculates and monitors the intrusion ratio using

detection metrics such as the sent and received number of packets. Raza et al. [95] created

SVELTE, IoT real-time IDS. This system combines a firewall, an intrusion detection module and

a 6LoWPAN Mapper. To detect the occurrence of network intrusions, it examines the mapped

data. Its ability to detect a variety of attacks appears promising. However, only forged or altered

data, selective forwarding attacks, and sinkhole attacks have been attempted. Santos et al. [96] and

Shreenivas et al. [97] added an intrusion detection module to SVELTE to improve it. To identify

suspicious network activity, the intrusion detection module compares the actual count of

transmissions with the predicted one. Furthermore, they were able to hint at the location of the

attacking nodes. Their results showed that when they merged the expected transmission count and

rank-based methods, the total true positive (TP) rate increased.

Pongle and Chavan [98] proposed a hybrid IDS with a centralized and distributed design that they

tested with simulated scenarios and networks. It is designed to detect wormholes and other routing

attacks. Jun and Chi [99] suggested specification based IoT IDS based on event processing. This

system utilizes several event processing techniques to identify attacks. In this system, IoT devices

are gathered, events are extracted, and then the system tries to detect attacks by comparing events

pattern repository stored rules. Despite being more efficient than traditional IDS, the system

utilizes CPU intensively. A bit-pattern technique and a deep packet analysis approach to establish

an IDS for IoT were developed by Summerville et al. [100]. Bit-pattern processing is used to

40

analyse incoming network packets, while n-grams are used to identify features from among a set

of similar bits. A match occurs when all relevant bits in the bit-pattern and n-grams match. Four

separate attacks are used to evaluate the system, with a low false positive rate.

A lightweight, adaptive and knowledge-driven IDS was proposed by Midi et al. [101]. It captures

data of the monitored network and utilizes it to create a compelling collection of detection

procedures dynamically. It can be expanded to accept new protocols while also serving as a

knowledge exchange platform for incident detection collaboration. According to the findings, the

system accurately identified the routing and DoS attacks. Thanigaivelan et al. [102] demonstrated

a hybrid Internet of Things IDS. In this approach, each network node keeps an eye on its neighbour.

At the data-link layer, the packets coming from the attacking node are blocked by the monitoring

node and abnormal behaviour is reported to the parent node. Oh et al. [103] built an IoT lightweight

distributed IDS based on a matching mechanism for packet payloads and threat signatures. They

put the IDS to the test by using standard attacks and signature-based attacks from older IDSs like

SNORT. The results showed that the performance of this IDS is promising. Ioulianou et al. [104]

developed a lightweight and hybrid signature-based IDS for dealing with two types of DoS attacks:

version number manipulation and "Hello" flood. Despite the positive results, their system has only

been using Cooja based simulated environment.

The IoT systems are notably dynamic and diverse in composition, as discussed in section (2.4.2).

This feature, in addition to the nearly impossible predictability of the actions of criminal

organizations, presents a substantial barrier to the design and implementation of efficient

signature-based intrusion detection systems (IDS) for IoT. This study uses machine learning to

overcome these challenges and create self-learning and adaptive detection techniques for securing

the IoT.

41

2.5.2. Modelling of Inputs and Attacks on IoT Networks

For machine learning algorithms to work correctly, they need to have a consistent and explicit

formalization regarding their input data, states such as (attack/normal), and outputs. To be more

precise, the idea of dimensionality reduction, which is used to define the process of selecting and

extracting features [105], requires a specific input characterization to be applied. Methods for

selecting features look for a subset of the initial features to use in their analyses. Three strategies

are used for selecting features, including, filtering (information gain), wrapping (search led by

accuracy), and embedding strategy (selecting features based on the number of predicted errors).

Sometimes, data analysis tasks like regression and classification may be executed with more

precision in the smaller space as compared to the original space in which they were conducted.

Defining what an attack is and how to appropriately describe it is another key difficulty that has to

be addressed. To put it differently, are we able to formalize and characterize:

• the "regular" state of an Internet of Things network (that is, normal functioning) and

• the "bad" state of an Internet of Things network (that is, an attack is occurring)?

This effort was made in [106], where the authors linked the likelihood of an attack and its related

data using Bayesian learning. On the other hand, further study is needed to describe attack classes

and the effect that these classes have on the status of the network. In addition, an attacker may

utilize this information to fine-tune an attack if they have access to data used in training or an

understanding of how machine learning algorithms are trained prior to the creation of the IoT

nodes, and unsupervised machine learning algorithms rely on attributes stored on the IoT devices’

hardware chip; this information should not be accessible. However, further research has to be done

on the effects of attacks of this kind.

42

2.5.3. Machine Learning Intrusion Detection Systems

There are two types of research on anomaly detection using the machine learning which are binary

classification and multiclass classification. The binary classification aims to detect normal/attack

states of the traffic without classification the attack. The multi-class classification aims at

categorizing the attack into different types such as DDoS, APR Spoofing etc. Here are the studies

related to binary classification and multi classification since 2019:

A) Binary Classification

As shown in Table (2-3), 21 studies utilized the KDDCUP99 and its refined version NSLKDD. 12

of the studies achieved more than 99% binary classification accuracy. None of these studies were

repeated on an IoT dataset. None of the reviewed studies aimed to or tried to reduce the input size.

Table 2-3: Summary of the reviewed binary classification studies related to the use of Machine

Learning in traffic anomaly detection

Article Year Model Dataset Accuracy

Li et al. [115] 2019 RF KDDCUP99 96

Yao et al. [112] 2019 MSML KDDCUP99 96.6

Anthi et al. [114] 2019 DT Testbed 99.97

Al Hakami et al. [116] 2019 NB KDDCUP99 84.06

Jan et al. [117] 2019 SVM CICIDS2017 98

Hwang et. al. [107] 2019 LTSM ISCX2012 99.99

Arivud. et. al [108] 2019 CNN NSLKDD 99.67

Vinayakumar et. [109] 2019 ANN KDDCUP99 93

Faker et. al.[110] 2019 ANN CICIDS-2017 97.73

Anani et. al.[111] 2019 LTSM NSLKDD 99.43

43

Li et. al.[113] 2019 GRU NSLKDD 82.87

Chen et. al [145] 2019 SVM KDDCUP99 99.5

Sapre et. al [147] 2019 NB KDDCUP99 99.37

Kawelah et. al [148] 2019 DT KDDCUP99 96.47

Wasi et. al [151] 2019 ANN KDDCUP99 99.23

Kim et. al.[118] 2020 CNN-LTSM CICIDS-2017 93

Roopak et. al.[119] 2020 CNN-LTSM CICIDS-2017 99.03

Jiang et. al.[120] 2020 LTSM KDDCUP99 98.94

Susilo et. al.[121] 2020 CNN BoT-IoT 91

Ferrag et. al.[184] 2020 RNN BoT-IoT 98.31

Hai et. al.[132] 2021 LTSM CICIDS-2017 99.55

Pooja et. al.[133] 2021 BiLTSM KDDCUP99 99.7

Biswas et. al.[134] 2021 LTSM-GRU NSLKDD 99.14

Laghrissi et. al.[135] 2021 LTSM KDDCUP99 98.88

Imrana et. al.[136] 2021 BiLTSM NSLKDD 94.26

ElSayed et. al.[137] 2021 CNN InSDN 97.5

Joshi et. al.[138] 2021 ANN CTU-13 99.94

Alyasiri et. al.[139] 2021 GE MQTTset 97.94

Hussain et. al.[140] 2021 DT MQTTset 99.47

Vaccari et. al.[141] 2021 RF MQTTset 99.68

Christiana et. al [146] 2021 SVM KDDCUP99 100

Maithem et. al [150] 2021 ANN KDDCUP99 99.978

Ullah et. al.[142] 2022 BiLTSM NSLKDD 99.92

44

Mohammed et. al [143] 2022 SVM KDDCUP99 99.99

Reddy et. al [149] 2022 ANN KDDCUP99 99.2

B) Multiclass Classification

The Table (2-4) shows that the most used dataset for the multi-classification in the recent years is

UNSW-NB15. Hence this dataset will be used in the multi classification test in Chapter5 also it is

detailed further in Section 2.6.2. The Table (2-4) also show that the highest accuracy achieved on

the UNSW-NB15 is 89.08%.

Table 2-4: Summary of the reviewed Multi classification studies related to the use of Machine

Learning in traffic anomaly detection.

Article Year Model Dataset Accuracy

Ge et al. [182] 2019 DNN BoT-IoT 98.09

Vinayakumar et al. [109] 2019 DNN KDD99 92.9

Chouhan et al. [183] 2019 CNN NSLKDD 89.41

Ferrag et al. [184] 2019 RNN BoT-IoT 98.2

Li et al. [186] 2019 GRU Testbed 80.3

Nguyen et al. [187] 2019 GRU Testbed 95.6

Moreton et al. [188] 2019 LTSM, GRU Testbed 96.06

Dong et al. [193] 2019 MCA-LSTM UNSW-NB15 77.74

Yang et al. [195] 2019 ICVAE-DNN UNSW-NB15 89.08

Aldhaheri et al. [178] 2020 BoT-IoT SNN 98.73

Ferrag et al. [179] 2020 RNN BoT-IoT 98.37

Ge et al. [180] 2020 DNN BoT-IoT 99.79

Malik et al. [181] 2020 LTSDM-CNN CIC-IDS2017 98.6

Kasongo et al. [189] 2020 CNN-BiLTSM UNSW-NB15 77.16

45

Mebawondu et al. [194] 2020 ANN-MLP UNSW-NB15 76.96

Sethi et al. [174] 2021 Reinforcement NSLKDD 96.5

ElSayed et al. [137] 2021 CNN InSDN 97.5

Imrana et al. [136] 2021 BiLTSM NSLKDD 91.36

Jia et al. [175] 2021 IE-DBN NSLKDD 98.79

Borisenko et al. [176] 2021 LTSM CIC-IDS2018 94

Liu et al. [177] 2021 DSSTE-LTSM NSLKDD 81.78

Acharya et al. [190] 2021 Bagging UNSW-NB15 87.4192

Aleesa et al. [191] 2021 RNN-LTSM UNSW-NB15 85.38

Lin et al. [196] 2021 RF-SMOT-C4.5 UNSW-NB15 87.35

Wu et al. [185] 2021 GBDT-SMOTE NSLKDD 78.47

Ullah et al. [142] 2022 BilTSM NSLKDD 99.92

Kasongo et al. [192] 2023 XGBoost-RNN UNSW-NB15 87.07

46

2.6. Datasets

Many public datasets are commonly used for anomaly detection testing and evaluation, such as

KDDCUP99 and UNSW-NB15 [56]. According to [57][58] and as found from the literature, the

most used dataset for anomaly detection is KDDCUP99 which is used for testing and evaluation

in Chapter 4, Chapter 5, and Chapter 6. According to [59][60], the UNSW-NB15 has more

modern-day network attacks. As found in the literature, it is the most used dataset for multi-

classification in recent studies; hence it is included in Chapter 5 to evaluate the CNNwGFC model.

These datasets are described in the below sub-sections:

2.6.1. KDDCUP99 Dataset

KDDCUP99 is a modified version of the dataset generated by an IDS software at Lincoln

Laboratory, MIT, and evaluated in 1998 and 1999. The DARPA-funded program generated the

dataset often known as DARPA98. Afterwards, the DARPA98 was selected for usage in the

International Knowledge Discovery and Data Mining Tools Competition [62], which led to the

creation of the KDDCUP99 dataset [63]. Here are the characteristics of the KDDCUP99 dataset:

A) Genesis

The KDDCUP99 dataset is built from TCPdump data generated from simulated network traffic

that was collected in 1998 at Lincoln Labs through the use of the TCPdump program [64].

Following seven weeks of traffic, five million connection data were collected and used as a training

set. The test dataset was generated from a two further weeks of simulated network traffic yielded

two million test cases. The complete programme is available on the MIT website. The KDDCUP99

data format is a formatted version of the TCPdump data.

47

B) Target classes

Probing Attack, User to Root (U2R), Denial Of Service (DoS), Remote to Local (R2L), and

Normal are the five classes of KDDCUP99 dataset [65]. Each class is further subclassified based

on the attack method used. Table (2-5) list the distribution of patterns across class labels.

C) Size and redundancy

The KDDCUP99 training dataset has 4,898,431 data points, but because of a high amount of

duplication (78%), only 1,074,992 unique data points were found [66]. The testing dataset has also

a lot of redundancy, with 89.5% of it being repetitive, reducing it from 2,984,154 to 311,029

patterns. Decrease in datasets is examined considered in this research.

D) Features

Each pattern consists of 41 features that are assigned a category: Traffic, Basic, or Content. In

contrast, an investigation of the Mean Decrease Impurity measure determined that the value 17

was unimportant [67]. Consequently, these 24 characteristics were examined during the

evaluation.

E) Skewedness

Table (2-5) reveals the skewed nature of the dataset: 98.61% of the data falls into the Normal or

DoS classes. This hinders the performance of classifiers for the remaining classes, as seen in the

following sections.

F) Non-stationary

The KDDCUP99 dataset has a non-stationary character whi ch can be seen in the distributions of

the training and testing datasets shown in Table (2-5) and Table (2-6). The training set has 23% of

DoS cases and 75.61% of Normal cases, whereas the test set has 73.9% of DoS cases and 19.48%

48

of Normal cases. This kind of disparity has been found to negatively affect performance as per

[68].

Table 2-5: Distribution of the KDDCUP99 training dataset.

Class Percentage

Training

Set

Count

Normal 75.61% 812,814

DoS 23.00% 247,267

Probe 1.29% 13,860

R2L 0.09% 999

U2R 0.01% 52

Total 100% 1,074,992

Table 2-6: Distribution of the KDDCUP99 testing dataset.

Class Percentage
Test Set

Count

Normal 19.48% 60,593

DoS 73.90% 229,853

Probe 1.34% 4,166

R2L 5.21% 16,189

U2R 0.07% 228

Total 100% 311,029

49

2.6.2. UNSW-NB15 Dataset

The UNSW-NB15 dataset is sufficiently close to KDDCUP99 in terms of generating process and

functionality to be a suitable replacement [61]. It avoids several shortcomings that make

KDDCUP99 unsuitable for testing a modern NIDS. Here are the characteristics of the UNSW-

NB15 dataset:

G) Genesis

This dataset was simulated over two days at the Australian Centre for Cyber Security (ACCS)

using the IXIA PerfectStorm software in 16-hour and 15-hour sessions. 45 unique IP addresses

were used over three networks, as opposed to 11 IP addresses utilized across two networks by

the KDDCUP99. While usual behaviour was not replicated, attacks were picked from a CVE site

that is routinely updated. TCPdump was used to capture communications at the packet level. There

are a total of 2,540,044 records on the ADFA website [69]. For the UNSW-NB15 training and

testing datasets, a much more compact split was used.

H) Target classes

UNSW-NB15 was created as an enhancement to the outdated KDDCUP99 dataset, it includes 10

different categories: one Normal and nine atypical, including Worms, Analysis, Backdoors,

Fuzzers, Exploits, DoS, Reconnaissance, Generic, and Shell Code. The UNSW-NB15 dataset has

more target classes (10) than the KDDCUP99 (5), which increases the complexity of the

classification task. Additionally, the higher Null Error Rate (55.056% in UNSW-NB15 compared

to 26.1% in KDDCUP99) makes the classification task more challenging, which in turn reduces

the overall accuracy of the classifier.

I) Size and redundancy

The training set of UNSW-NB15 has 175,341 data points, and the test set has 82,331. Although

these numbers are relatively small compared to KDDCUP99, it was found that the size is sufficient

for training high-variance classifiers for intrusion detection [131]. There are no duplicate data

points in the dataset.

50

J) Features

49 features were extracted and grouped into five categories - Flow, Basic, Content, Time, and

Additional Generated - using Argus and Bro-IDS. The Mean Decrease Impurity method was

applied to eliminate unimportant characteristics.

K) Skewedness

Compared to the KDDCUP99 dataset, the skewness of UNSW-NB15 is substantially lower than

KDDCUP99 [70].

L) Non-Stationarity

Table (2-7) and Table (2-8) demonstrates that data stationarity is preserved across the training

and test sets in UNSW-NB15 since both have comparable distributions [70].

Table 2-7: Distribution of the UNSW-NB15 training dataset.

Class Percentage
Training

Set

Normal 31.94% 56,000

Generic 22.81% 40,000

Exploits 19.05% 33,393

Fuzzers 10.37% 18,184

DoS 6.99% 12,264

Reconnaissance 5.98% 10,491

Analysis 1.14% 2,000

Backdoor 1.00% 1,746

Shell Code 0.65% 1,133

Worms 0.07% 130

Total 100% 175,341

51

Table 2-8: Distribution of the UNSW-NB15 testing dataset.

Class Percentage Test Set

Normal 44.94% 37,000

Generic 22.92% 18,871

Exploits 13.52% 11,132

Fuzzers 7.36% 6,062

DoS 4.97% 4,089

Reconnaissance 4.25% 3,496

Analysis 0.82% 677

Backdoor 0.71% 583

Shell Code 0.46% 378

Worms 0.05% 44

Total 100% 82,332

52

2.6.3. IoT Dataset

A) Attack Types

This dataset was released in 2019 in the forms of pcap traces (unnormalized) [78]. It contains two

types of attacks simulated on IoT devices: direct and reflective. The direct attacks included Ping

of Death, Fraggle (UDP flooding), TCP SYN flooding, ARP spoofing, and, while the reflective

attacks included TCP SYN, Smurf, SSDP, and SNMP. The researchers used devices such as the

WeMo switch and WeMo motion lack substantial computing resources and are prone to

malfunctioning when subjected to high levels of traffic. The threshold for what constitutes a "high"

traffic rate varies between different devices.

 In the reflective attacks simulated in this dataset [78], the traffic rate was kept low in order to keep

the targeted device operational while still reflecting the attack. For instance, the WeMo switch

would remain working under low attack traffic levels but become non-functional under higher

levels, making the attack unsuccessful. The researchers launched various attacks at different levels

(low: 1 packet per second, medium: 10 packets per second, high: 100 packets per second) and from

different locations (either the internet or a local network). All of the attacks lasted for 10 minutes,

and a total of 200 attacks were conducted. The researchers wanted to see how these attacks would

affect traffic on various protocols, including ICMP, UDP, TCP, and ARP as well as application

layer attacks like SMTP, HTTP, DNS, and HTTPS. The researchers aimed to conduct these attacks

without being detected by a classic intrusion detection system.

This dataset included simulations of attacks that were carried out both on the local network and

the internet. For attacks originating from the Internet, the researchers used port forwarding to

mimic malware behaviour on the gateway. For attacks launched from within the local network,

they used IP and port spoofing.

53

B) Tool:

The researchers developed a Python-based tool that can detect vulnerabilities in consumer IoT

devices by conducting tests on the devices within the local network. These vulnerabilities may

include weak encryption, SNMP, exposed ports, or unencrypted communication and SSDP. Once

vulnerabilities are identified, the tool launches relevant attacks and generates annotations

containing information about the targeted IP, the intruders’ host information, the start and end time

of the attack, the bitrate, the attack protocol, and the attack port number.

C) Testbed:

Figure 2-18 shows the testbed used to capture the pcap traces, The researchers set up a testbed

with a TPLink router running OpenWrt firmware and a variety of IoT devices: Amazon Echo,

Samsung smart camera, Phillips Hue bulb, Netatmo camera, WeMo switch, Chromecast Ultra,

LiFX bulb, WeMo motion sensor, and iHome smart plug, TPLink smart plug. They included two

attackers in the testbed, one local to the LAN and one remote on the internet. The researchers used

an external hard drive connected to the router and the tcpdump tool to record all network traffic,

both local and remote. They TCPdumps of normal and attack traffic over a 16-day period,

annotating the attack traffic in the dataset. They also discovered that other attacks, known as wild

attacks, were launched from the internet as a result of enabling port forwarding. They recorded all

possible user interactions with each device. For example, the researchers used a tool installed on a

Samsung galaxy tab to capture the normal behaviour touches. They replayed these touches at

random intervals to simulate real user’s activity. For the Amazon Echo, they used a program that

randomly selected statements from a predetermined text-to-speech list. The researchers collected

pcap traces covering a one-month period of normal and attack traffic for ten IoT devices, which

were released with annotations for the attacks. The published dataset includes 30 pcap files, each

corresponding to a single day trace.

54

Figure 2-17: System prototype and testbed [78].

55

2.7. Time Series

The values or occurrences in a time series dataset are typically recorded at predetermined intervals

[71]. Insights may be gleaned from the time series data produced by things like real-time

surveillance systems, web traffic, network sensors, and data collection tools found online. There

are several uses for time series datasets, including quality control, financial analysis, scientific

research, and medicinal therapies.

Large volumes of data may be created in dynamic situations and incorporate several data sources.

This creates an extra difficulty when analysing time series data. In addition to many data formats,

a rapid rate of change, and enormous volumes of gathered data, time may be recorded

inconsistently, or data may include noise that obscures the "truth" inside the data. A thorough

picture of the sequence of events may be obtained by correlating occurrences from numerous

sources.

Models of windows may be categorised as a landmark, sliding, or decaying [72]. Depending on

the context, a window might be measured in either time or count. The exponentially decaying

window (or damped window) is a sliding window variation in which previous events are given

less weight than more recent ones. In landmark windows, aggregated values between a landmark

period and the current are included.

In order to handle event streams effectively, sliding windows are often used [73]. Instead of

making decisions based on a representative sample or a thorough analysis of all the data, just the

most recent data are used. Once the sums of the preceding N values have been computed, they are

stored in the respective window as shown in Figure (2-19). As time goes on, new things are

introduced while others are removed. Typically, the window has a defined size. Restricting the use

of more current data helps ensure that irrelevant data does not affect statistical results.

56

Figure 2-18: Sliding Window Model

Time series analysis aims to explain how past events might influence future occurrences, how two-

time series interact, and to predict future values [74][75]. The following procedures are utilised to

achieve these goals:

• Trend analysis entails the identification of a trend, cyclic movement, seasonal changes, or

irregular movement. A trend line is used to represent trends over an extended period. The

weighted average and least squares techniques are typical approaches for determining long-

term tendencies.

• Cyclical movements are long-term swings or oscillations around a trend line or curve.

• Seasonal variations are calendar-based and often recurring changes, such as holidays.

Unregular motions are the result of random chance.

• Similarity search identifies sequences with minor differences from a given sequence. In

addition, similarity search is capable of matching either partial or whole sequences. Find a

comparable-performing stock as an example.

57

• Clustering classifies time series data into subsets that share some defining feature, such as

a high degree of similarity or a small average distance. Classification builds a model from

the time series to predict the label of an unlabelled time series.

58

2.8. Summary

In summary, the Internet of Things (IoT) enables us to link practically everything, including

people, devices, and physical items, to the internet, which significantly impacts our society. In the

following years, networked devices will be considerably increased, which means that the Internet

of Things will offer significant problems to the information security industry. There are several

challenges in securing IoT devices, including network size, the number of devices, the human

factor as well the complexity of the IoT networks.

There are several gaps in the research related to anomaly detection. The signature-based Intrusion

detection systems are not dynamic; hence they lack the ability to detect anomalies. No study

currently defines the parameters that could be used for anomaly detection. Most of the models

reviewed in the related work are based on a high number of features which results in high usage

of resources on the IoT devices which already suffers from resource constraints. Most used

standard datasets, such as KDDCUP99 and UNSW-NB15, without testing on real IoT datasets.

The highest multi-classification accuracy achieved from the literature on the UNSW-NB15 is

89.08%,

The gaps mentioned above are covered in the following chapters using the reviewed machine

learning models: Artificial Neural Networks, Decision Trees, Support Vector Machines, Naïve

Byes and Convolutional Neural Networks. Chapter 3 compares the performance of several

machine learning algorithms in traffic anomaly detection on KDDCUP99 and IoT datasets.

Chapter 4 focuses on optimising the input parameters to reduce the time and resources required to

train the models. Chapter 5 aims to develop a model that archives an improved multi-classification

accuracy on the UNSW-NB15 than the highest found from the literature (89.08%)

59

3. Chapter Three: Comparing the binary classification

Performance of Machine Learning Algorithms in

Anomaly Detection on KDDCUP99 and Created IoT

datasets

3.1. Overview

This chapter tests the binary classification performance of the following Machine Learning (ML)

algorithms in anomaly detection in the KDDCUP99 and created IoT datasets: Neural Networks

(NN), Gaussian Naive Bayes (NB), Decision Trees (DT), and Support Vector Machine (SVM). It

shows that Decision Trees and Neural Networks perform similarly in anomaly detection on both

datasets. It also shows that the Gaussian Naive Bayes and Support Vector Machines model

performance is lower than other models on the IoT dataset.

This chapter includes four other sections: Methodology, Experimentation, Findings and

Conclusion. The methodology details the proposed system architecture, the algorithm used, the

environment specification, the data sample, and the evaluation performance metrics. The

Experimentation section includes the results of applying the above-mentioned machine learning

models on the datasets. The Findings section compares the performance of applying the machine

learning algorithms on the KDDCUP99 and the IoT datasets. The conclusion section includes a

summary of the findings of this chapter.

60

3.2. Methodology

3.2.1. System Overview

Various assumptions regarding consumer IoT networks are made in the threat model (Figure 3-1).

It is assumed that the network includes a middle box device such as a home gateway router, that

links the IoT network to other networks and analyses traffic between IoT devices on the local area

network and the Internet. This device will analyse, store, alter, and block any network

communication that passes through it. This middlebox handles all communication between LAN

Wi-Fi devices and Internet-connected devices.

The aim is to protect IoT devices from DoS attack traffic; hence they are connected to the

middlebox which enables them to send and receive network traffic, including attack traffic. In

addition, each device may counter DoS attacks, and the duration of consecutive attacks may vary.

Traffic is analysed in time series of 1 second which is shorter than typical DoS attacks to avoid

detection [76][77].

The programming logic of the trained model is mentioned in Algorithm 1. Algorithm 1 takes the

data captured by the middlebox as well as the instructed ML model such as NN, SVM, NB or DT.

After that, Algorithm 1 starts to train the model using the captured data. Once trained model is

available, Algorithm 1 starts to analyse the traffic, if anomaly/attack is detected then traffic is

blocked if not then traffic is allowed.

Figure 3-1: Middlebox Approach for Capturing IoT traffic.

61

Algorithm 1 Machine learning based Anomaly Detection programming

INPUTS: Datasets, machine learning models

OUTPUT: machine learning based Anomaly Detector

PROCEDURE:

1: Read traffic going through the middle box

2: Apply machine learning model

3: Train the machine learning model to detect normal/abnormal traffic trend

4: if Trained machine learning model is available then

5: Test the traffic

6: if traffic trend is abnormal then

7: Block traffic

8: else

9: Allow traffic

10: end if

11: else

12: Wait for creating a trained machine learning model

13: end if

Python is the language chosen to implement the model. Google Colab is the execution environment

chosen to implement, train and test the models. At the time of the experiment, the Google Colab

allowed the use of 25.6 GB of RAM, Disk space of 225.89 GB and offered Intel(R) Xeon(R) CPU

@ 2.20GHz.

62

3.2.2. Data Sample

Figure (3-2) shows the flow followed to prepare the data sample for training and testing the models.

The first dataset used is KDDCUP99 dataset which is detailed in section 2.6.1. The second sample

is a subset of an open real IoT dataset which is detailed in section 2.6.3 [58]. The real IoT dataset

was collected from an instrumented living lab with 10 IoT devices emulating a smart environment.

The real IoT dataset used include several types of IoT devices, including motion sensors, cameras,

plugs, lights, and appliances. The real IoT dataset is in the form of Packet Capture (PCAP) traces.

The real IoT dataset contains the following type of attacks Address Resolution Protocol (ARP)

Spoofing, TCP Sync, Ping of Death, UDP Device, TCP Sync Reflection, SMURF, Simple

Network Management Protocol (SNMP), Simple Service Discovery Protocol (SSDP).

Figure 3-2: Data preparation process [198].

Table (3-1) shows that UDP and TCP protocols represent more than 80% of the data. The number

of attack cases represent 1.7% of the dataset as shown in Table (3-2). Table (3-3) shows that the

highest used services are TCP, NTP and UDP.

63

Table 3-1: Percentage of each Transport/Network protocol type in sample dataset.

Protocol Type Percent

ICMP 2.8

IGMP 0.1

TCP 32.3

UDP 48.8

NULL 16.0

Table 3-2: Percentage of attack cases in sample dataset.

Attack Percent

0 98.3

1 1.7

64

Table 3-3: Percentage of each application in sample dataset.

service Percent

TCP 21.9

NTP 10.8

UDP 9.4

GQUIC 5.4

ARP 4.8

ICMP 2.8

TLSv1.2 2.8

SSHv2 2.7

TLSv1 2.6

DNS 2.4

STUN 1.0

HTTP 0.6

HTTP/XML 0.6

ICMPv6 0.3

MDNS 0.2

IGMPv2 0.1

MQTT 0.1

Others 31.4

65

3.2.3. Performance Evaluation

The following metrics were calculated for each model:

Accuracy: It measures the percentage of correct predictions made by the model out of the total

number of samples in the dataset. Here is the equation for accuracy:

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (3-1)

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives)

from the total number of samples. Here is the equation for Precision:

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3-2)

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual

positive samples in the dataset. Here is the equation for Recall:

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3-3)

F1 Score: It Is used to assess the balance between precision and recall. Here is the equation for F1

Score:

Precision × Recall

Precision +Recall
 (3-4)

where

• TP = The Number of True Positives

• TN = The Number of True Negatives

• FP = The Number of False Positives

• FN = The Number of False Negatives

Accuracy, precision, recall and F1 are used to evaluate the four Machine Learning algorithms

chosen for this study which will be detailed in the next section.

66

3.3. Experimentation

The four machine learning algorithms were tested to classify normal and abnormal traffic. Here

are the results for each machine learning algorithm:

3.3.1. Gaussian Naive Bayes Model

Gaussian Naive Bayes Model was implemented using Equation (3-1). The equation assumes that

the variables (𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) are independent. The class to be predicted “c” is category of the

traffic which is “Attack” or “Benign”.

𝑃(𝐸|𝑐) = 𝑃(𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) = ∏ 𝑃(𝑎𝑖|𝑐)𝑛
𝑖=1 (3-1)

The results are shown in Table (3-4). On KDDCUP99 dataset, it achieved 0.9614 accuracy in

detection of attacks. It achieved a 0.9604 F1-Score. It achieved a precision of 0.9628. It achieved

a recall of 0.9614.

On the IoT dataset, it achieved 0.89914 accuracy in detection of attacks. It achieved 0.89808 F1-

Score. It achieved a precision of 0.91601. It achieved a recall of 0.89914.

Table 3-4: Gaussian Naive Bayes Model Classification Results.

Metric KDDCUP99 Dataset IoT Dataset

Accuracy 0.9614 0.89914

F1-Score 0.9604 0.89808

Precision 0.9628 0.91601

Recall 0.9614 0.89914

67

3.3.2. Decision Tree Model

The C4.5 algorithm was used in implementing the decision tree model. The C4.5 algorithm builds

a decision tree from a set of training data, where each internal node represents a decision based on

one of the input features, each branch represents the outcome of that decision, and each leaf node

represents the class label of the data instances falling into that leaf's region [199]. It is represented

by Equation (3-2):

𝐼𝑛𝑓𝑜(𝑆) = − ∑ ((
𝑓𝑟𝑒𝑞(𝐶𝑖,𝑆)

|𝑆|
) . 𝑙𝑜𝑔2 (

𝑓𝑟𝑒𝑞(𝐶𝑖,𝑆)

|𝑆|
))𝑘

𝑖=1 (3-2)

Where:

• Info(S): Represents the information or uncertainty in the set of data instances S with respect

to their class labels. It measures how much randomness or disorder exists in the class

distribution within S.

• k: Represents the number of distinct classes in the dataset. In other words, if there are k

unique class labels, the sum in the formula will have k terms.

• freq(C_i, S): Represents the frequency (count) of instances in S that belong to class C_i. In

other words, it counts how many data points in S have the class label C_i.

• |S|: Represents the total number of data instances in set S.

• log_2(x): Represents the base-2 logarithm of x.

As shown in Table (3-5), using the KDDCUP99 dataset, the Decision Tree model achieved 0.9997

in all metrics: accuracy, F1-score, precession, and recall. However, on IoT dataset, it achieved

0.98244 accuracy in detection of attacks. It achieved 0.98243 F1-Score. It achieved a precision of

0.98303. It achieved a recall of 0.98244. These results are shown in Table (3-5).

68

Table 3-5: Decision Tree Classification Results.

Metric KDDCUP99 Dataset IoT Dataset

Accuracy 0.9997 0.98244

F1-Score 0.9997 0.98243

Precision 0.9997 0.98303

Recall 0.9997 0.98244

69

3.3.3. Support Vector Machine Model

The supervised SVM model was implemented using the “Radial Basis Function” RBF kernel

which is represented by the Equation (3-3):

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2) (3-3)

• K(x, x'): Represents the RBF kernel function applied to two data points x and x', where x and

x' are vectors of input features.

• γ (gamma): Is a hyperparameter of the RBF kernel that controls the spread of the kernel

function. It determines the influence of each training data point on the decision boundary.

Smaller values of γ lead to a broader influence, while larger values of γ result in a narrower

influence.

• ||x - x'||^2: Represents the Euclidean distance (L2 distance) between the two data points x and

x'. It measures the similarity between the two data points in the feature space.

• exp(): Is the exponential function, which is used to scale the distance term. The exponentiation

in the RBF kernel ensures that the similarity decreases as the distance between the data points

increases.

As shown in Table (3-6), using the KDDCUP99 dataset, the SVM as shown in Table 3-6, achieved

0.9943 accuracy in detection of attacks. It achieved a 0.9942 F1-Score. It achieved a precision of

0.9942. It achieved a recall of 0.9943.

On the other hand, using the IoT dataset, it achieved 0.89963 accuracy in detection of attacks. It

achieved a 0.89860 F1-Score. It achieved a precision of 0.91638. It achieved a recall of 0.89963.

Table 3-6: SVM Classification Results.

Metric KDDCUP99 Dataset IoT Dataset

Accuracy 0.9943 0.89963

F1-Score 0.9942 0.89860

Precision 0.9942 0.91638

Recall 0.9943 0.89963

70

3.3.4. Neural Network Model

The topology of the ANN consisted of three hidden layers of size 8 nodes, 4 nodes and 2 nodes.

The output layer is of a single node. Each node is using the following equation to calculate the

weight:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑ 𝑤𝑖𝑥𝑖𝑖) (3-4)

The activation function used is the ReLU function which is defined as:

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (3-5)

Results are shown in Table (3-7). it achieved 0.9987 in all metrics: accuracy, F1-score, precession,

and recall on the KDDCUP99 dataset. On the IoT Dataset, it achieved 0.98103 accuracy and

0.98172 precision.

Table 3-7: ANN Classification Results.

Metric KDDCUP99 Dataset IoT Dataset

Accuracy 0.9987 0.98103

F1-Score 0.9987 0.98102

Precision 0.9987 0.98172

Recall 0.9987 0.98103

71

3.4. Findings

When comparing intrusion detection in both KDDCUP99 and IoT sample data set, neural network

and DT maintained similar performance. NB and SVM failed to maintain the similar performance

in intrusion detection in both KDDCUP99 and IoT sample data set.

Figure (3-3) shows that using Decision Trees and Neural Networks, there is a difference of less

than 1.8% in accuracy on both KDDCUP99 and IoT datasets. It also shows there is a difference of

more than 8% for SVM and NB.

 Dataset/Algorithm

Figure 3-3: Comparing the accuracy result of the IoT dataset

with KDDCUP99.

R
at

io

72

Figure (3-4) shows that using Decision Trees and Neural Networks, there is a difference of less

than 1.8% in f1-score score on both KDDCUP99 and IoT datasets. It also shows there is a

difference of more than 8.5% for SVM and NB.

Dataset/Algorithm

Figure 3-4: Comparing the f1_score result of the IoT dataset with

KDDCUP99 dataset.

R
at

io

73

Figure (3-5) shows that using Decision Trees and Neural Networks, there is a difference of less

than 1.7% in precision score on both KDDCUP99 and IoT datasets. It also shows there is a

difference of more than 7% for SVM and NB.

Dataset/Algorithm

Figure 3-5: Comparing the precision score result of the

IoT dataset with KDDCUP99 dataset.

R
at

io

74

These findings show the following:

• While the SVM and NB machine learning models work well on the KDDCUP99 dataset,

as found by [143][145][146][147], they do not perform well on the IoT dataset.

• SVM performance dropped because it works better with a high number of features while it

performs lower on a low number of features [152][153]. The KDDCUP99 has 41 features,

while the IoT dataset has only 5 features. SVMs are a type of linear classifier that seeks to

find the hyperplane in a high-dimensional space that maximally separates the data points

of different classes. When the number of dimensions is low, it may be more difficult for an

SVM to find a good separation boundary.

• The reason the performance dropped for the NB model is that it assumes that features are

independent; however, in anomaly, there is higher collinearity between different features

[25][154][155]. In the IoT dataset, the is higher collinearity hence models that detect

collinearity will perform better. The Naive Bayes classifier makes the assumption of

independence between features because it simplifies the calculation of the probability of a

feature occurring given a particular class. Without the independence assumption, the

probability would need to take into account the interactions between all of the features,

which can be computationally expensive and may not always be possible.

• The NN and DT machine learning models maintained the same performance on both

datasets, which shows that they have the potential to be used as anomaly detectors for IoT

networks.

• Machine learning algorithms need to be tested on different datasets to verify their

performance as they differ from one dataset to another.

75

3.5. Summary

This chapter explored applying Gaussian Naive Bayes, Support Vector Machine, Decision Trees

and Neural Networks machine learning models in anomaly detection in the KDDCUP99 and IoT

datasets. When applying the machine learning algorithms on the KDDCUP99 dataset, it is found

that Decision Trees, Support Vector Machines and Neural Networks perform the best in binary

classification anomaly detection. The Gaussian Naive Bayes model performance is lower than

other models. The accuracy of the Gaussian Naive Bayes model is lower by 0.0361 than the

average of the other models. The precision of the Gaussian Naive Bayes model is lower by 0.0347

than the average of the other models.

This chapter showed that when applying the machine learning algorithms on a real IoT dataset, the

binary classification performance results differ from the performance on the KDDCUP99. The

results show that NN and DT perform similarly on KDDCUP and IoT datasets. On the other hand,

SVM and NB have a difference of 8% in accuracy. It also shows that SVM and NB have a

difference of more than 7% in precision.

When using all the features of the KDDCUP99 or IoT datasets, the findings show potential in

using Decision Trees, Support Vector Machines in anomaly detection. However, in reality, only

some of the features in the KDDCUP99 dataset are available when capturing network traffic. In

addition, using all the features increases the resources and execution time required to generate the

results. Hence the next chapter reduces the input size from 41 in the KDDCUPP99 dataset to 5

features only and compares the performance results with the findings of this chapter.

76

4. Chapter Four: Reducing Anomaly Detection Time in the

KDDCUP99 data via Dimensionality Reduction

4.1. Overview

This chapter aims to reduce the input size required by Neural Network, Support Vector Machine,

Decision Tree, and Naïve Bayes machine learning models to detect binary classification anomalies

in the IoT traffic. It measures the performance of the machine learning algorithms when using five

features only as input. It compares the performance of applying the machine learning algorithms

using five and all dataset features. The results will show that using only five features, the tested

machine learning models can distinguish between normal and abnormal traffic on the KDDCUP99

dataset in a reduced time of 58% on average.

This chapter includes four other sections: Methodology, Experimentation, Findings and

Conclusion. The methodology details the proposed system architecture, the algorithm used, the

environment specification, the data sample, and the evaluation performance metrics. The

Experimentation section includes the results of applying the above-mentioned machine learning

models on the datasets using only five features. The Findings section compares the performance

of applying the machine learning algorithms using five and all features as input. The conclusion

section includes a summary of the findings of this chapter.

77

4.2. Methodology

4.2.1. System Overview

In order to compare the results between experiments, the same architecture, algorithm and system

specifications are used. It is assumed that the network includes a middle box that links the IoT

network to other networks and analyses traffic between IoT devices on the local area network and

the Internet. This device will analyse, store, alter, and block any network communication that

passes through it. It is illustrated in Figure (4-1). It is explained in further details in section 3.2.1.

Algorithm 1 which is explained in section 3.2.1 in details is used. It takes the data captured by the

middlebox as well as the instructed ML model. After that, the Algorithm starts to train the model

using the captured data. Once trained model is available, the Algorithm starts to analyse the traffic,

if anomaly/attack is detected then traffic is blocked if not then traffic is allowed. System

specifications were detailed in section 3.2.1. Python is the language chosen to implement the

model.

Figure 4-1: Middlebox Approach for Capturing IoT traffic.

78

4.2.2. Selected Features

A network monitor is a tool that records traffic data packets or log results when a network failure

or attack occurs. Several types of network monitors are available, each with its own set of features

and capabilities [166][167]. For example, Wireshark is a popular open-source network protocol

analyser that can be used to capture and analyse network traffic in real time. NetFlow is a Cisco-

developed protocol that is used to collect and analyse IP traffic data and can be used for network

traffic accounting, monitoring, and analysis.

Most network monitors work by collecting data from network devices, such as switches, routers,

or dedicated network collection devices [168]. The collected data is then analysed and reported

on, providing network administrators with insights into network activity, performance, and

security. Network monitoring is typically performed using a flow-based approach, where a traffic

flow is defined using a five-tuple (source IP, source port, destination IP, destination port, and

protocol) [169][170]. This information is used as a baseline to create a minimal feature list that

can be captured by most network monitors. The following are the features in the minimal feature

list:

• Attack: The data in benign state were tagged with 0 and during attack with 1.

• protocol_type: protocol type of the connection i.e. TCP, UDP and ICMP

• Application: for example, http, ftp, smtp, telnet... and other

• length: total bytes sent or received in one connection.

• count: sum of connections to the same destination IP address occurred in the past 2

seconds.

• srv_count: sum of connections to the same destination port number occurred in the past 2

seconds.

79

Table (4-1) shows sample values for each of the selected parameters.

Table 4-1: Sample values for the selected features

Parameter Sample Value

Attack 0

protocol_type ICMP

service MQTT

length 466

count 13

srv_count 599

Table (4-2) shows the mapping of the traffic flow attributes to the minimal feature list:

Table 4-2: Sample values for the selected features

Feature Traffic Flow

protocol_type Protocol

service Source/Destination Port

count Source/Destination IP

srv_count Source/Destination Port

The “length” feature is added to the minimal feature list because it decides the amount of traffic

generated between two devices which is a non-trivial information for anomaly detection

[171][172]. The “length” can be detected and analysed by network monitors. Most network

monitors, including Wireshark, and NetFlow, are able to capture and analyse packet size

information as part of the network traffic data [173].

80

4.2.3. Performance Evaluation

The same performance metrics used in the previous experiment were used in this experiment. Here

are the metrics:

Accuracy: It measures the percentage of correct predictions made by the model out of the total

number of samples in the dataset. Here is the equation for accuracy:

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (3-1)

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives)

from the total number of samples. Here is the equation for Precision:

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3-2)

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual

positive samples in the dataset. Here is the equation for Recall:

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3-3)

F1 Score: It Is used to assess the balance between precision and recall. Here is the equation for F1

Score:

Precision × Recall

Precision +Recall
 (3-4)

where

• TP = The Number of True Positives

• TN = The Number of True Negatives

• FP = The Number of False Positives

• FN = The Number of False Negatives

81

4.3. Experimentation

The four machine learning algorithms were tested to classify normal and abnormal traffic on the

trimmed KDDCUP99 dataset. Here are the results for each machine learning algorithm:

4.3.1. Gaussian Naive Bayes Model

The Gaussian Naive Bayes Model was tested using the five selected features as input. The results

are shown in Table (4-3). The results shows that the Gaussian Naive Bayes Model achieved better

accuracy and precision after reducing the input size.

Table 4-3: Gaussian Naive Bayes Model Classification Results.

Metric Before After

Accuracy 0.9614 0.9862

F1-Score 0.9604 0.9858

Precision 0.9628 0.9862

Recall 0.9614 0.9862

82

4.3.2. Decision Tree Model

Decision Tree Model was tested using the five selected features as input. The results are shown in

Table (4-4). The results shows that the Decision Tree Model achieved a similar accuracy and

precision before and after the input size reduction.

Table 4-4: Decision Tree Classification Results.

Metric Before After

Accuracy 0.9997 0.9994

F1-Score 0.9997 0.9994

Precision 0.9997 0.9994

Recall 0.9997 0.9994

83

4.3.3. Support Vector Machine Model

The SVM model was tested using the five selected features as input and tested on IoT dataset. The

results are shown in Table (4-5). The results shows that the SVM Model achieved similar accuracy

and precision before and after the input size reduction.

Table 4-5: SVM Classification Results.

Metric Before After

Accuracy 0.9943 0.9944

F1-Score 0.9942 0.9944

Precision 0.9942 0.9944

Recall 0.9943 0.9944

84

4.3.4. Neural Network Model

The Neural Network Model was tested using the five selected features as input. The results are

shown in Table (4-6.) The results shows that the NN achieved similar accuracy and precision

before and after the input size reduction.

Table 4-6: ANN Classification Results.

Metric Before After

Accuracy 0.9987 0.9983

F1-Score 0.9987 0.9983

Precision 0.9987 0.9983

Recall 0.9987 0.9983

85

4.4. Findings

When comparing the results of the experiment done in Chapter 3 which used all features as input

and the experiment done in this Chapter which uses only five features: protocol_type, Application,

length, count and srv_count. It is found that the performance of the Neural Network, SVM and

Decision Trees machine learning models is similar. However, for Gaussian Naive Bayes Model,

there is an improvement in the performance.

Figure (4-2) shows that there is less than 0.04% in accuracy between using all variables and the

five selected features for Decision Trees, SVM and Neural Networks. However, there is an

increase of 2.5796 % for Gaussian Naive Bayes Model.

 Model

Figure 4-2: The difference in accuracy between using all features and the five

chosen features.

D
if

fe
re

n
ce

 i
n
 %

86

Figure (4-3) shows that there is less than 0.04% in F1-score between using all variables and the

five selected features for Decision Trees, SVM and Neural Networks. However, there is a

difference of 2.6490 % for Gaussian Naive Bayes Model.

Figure 4-3: The difference in F1-score between using all features and the five chosen features.

Model

D
if

fe
re

n
ce

 i
n

 %

87

Figure (4-4) shows that there is less than 0.04% in accuracy between using all variables and the

five selected features for Decision Trees, SVM and Neural Networks. However, there is a

difference of 2.24250 % for Gaussian Naive Bayes Model.

D
if

fe
re

n
ce

 i
n
 %

Model

Figure 4-4: The difference in F1-score between using all features and the five

chosen features.

88

Figure (4-5) shows that there is less than 0.04% in accuracy between using all variables and the

five selected features for Decision Trees, SVM and Neural Networks. However, there is a

difference of 2.57963 % for Gaussian Naive Bayes Model.

D
if

fe
re

n
ce

 i
n
 %

Model

Figure 4-5: The difference in recall between using all features and the five chosen

features.

89

Figure (4-6) shows the time of execution before and after the input size reduction. Figure (4-7)

shows that the time for identifying the test sample traffic type is reduced by more 70% for NN,

56% for SVM, 75% for DT and 30% for NB. This result in average of 58%-time reduction for the

four models.

Figure 4-6: Execution time using all features and the five chosen features.

D
if

fe
re

n
ce

 i
n
 s

ec
o
n
d
s

Model

90

Model

Figure 4-7: The difference in execution time between using all features and

the five chosen features.

D
if

fe
re

n
ce

 i
n
 %

91

The findings show that:

• The accuracy, precision, and F1-Score for the Neural Network, SVM and Decision Trees

is similar when using five or all the features in the KDDCUP99 dataset.

• The Neural Network achieved similar performance as it can reduce the influence of the

irrelevant features (noise) while increasing the influence of the relevant features during

learning [155][156][157]. Hence removing the irrelevant features did not impact the

performance of the Neural Network.

• Usually, SVM works better with high dimensional data as seen in Chapter3 however when

the irrelevant features (noise) are reduced then SVM performance is not affected and, in

some cases, it improves when it finds a good separation boundary [158][159].

• The DT achieved similar performance due to its nature in constructing a tree-like model of

decisions based on the data features. Hence removing the noise, will not impact the DT

much unless an important root leaf feature is removed [160][161].

• The reason for the NB model performance to be better unlike the drop seen in Chapter3 is

that KDDCUP99 dataset five features are not highly correlated. The NB works better when

the features are independent [25][155].

• There is high difference in execution time for the Neural Network, SVM and Decision

Trees.

• Using fewer input features in a neural network generally means that there is less data for

the network to process and learn from, which can make training the network

faster[162][163]. This is because the network has fewer parameters to update and fewer

computations to perform during training.

92

• Using fewer input features in a support vector machine (SVM) can also make training faster

because there is less data for the model to process [164]. SVMs are a type of supervised

machine learning model that can be used for classification or regression tasks. They work

by finding the hyperplane in a high-dimensional space that maximally separates different

classes or values. When there are fewer input features, there are fewer dimensions in this

space, which means that the SVM has less work to do in order to find the hyperplane.

• Using fewer input features in a decision tree can also make training faster because there is

less data for the model to process [160]. Decision trees are a type of supervised machine

learning model that can be used for classification or regression tasks. They work by

learning a series of rules that can be used to make predictions based on the values of the

input features. When there are fewer input features, there are fewer rules that the decision

tree has to learn, which means that it has less work to do.

• Naive Bayes classifiers are generally fast to train comparing to other models as seen in

previsions studies [144][165] because they are based on simple probability estimates

hence, they achieved lower difference in execution time than other models.

• Using fewer input features in a Naive Bayes classifier can make training faster because

there is less data for the model to process. Naive Bayes classifiers are a type of supervised

machine learning model that can be used for classification tasks. They are based on the

idea of using Bayes' theorem to predict the probability of a given class label, based on the

values of the input features. When there are fewer input features, there are fewer

probabilities that the classifier needs to estimate, which means that it has less work to do.

93

4.5. Summary

In summary, this chapter compared the performance of the Neural Network, Support Vector

Machine, Decision Tree, and Naïve Bayes machine learning models in binary classification

anomaly detection when using all KDDCUP99 dataset features and five selected features as input.

The selected input features are protocol type, service type, total length, count of connections from

the same IP and number of connections from the same destination port. The results show that the

applied machine learning modes can distinguish between normal and abnormal attacks using all

or five features only. The Neural Network, Support Vector Machine, and Decision Tree maintained

the same performance. The Naïve Bayes achieved better performance when using only five

features. The benefit of using only five features is the reduced time required to train and process

data by the machine learning model. The results show a reduction in time required by 58% on

average. Hence, it is concluded that using only five features; the tested machine learning models

can distinguish between normal and abnormal traffic on the KDDCUP99 dataset in a reduced time

of 58% on average.

94

5. Chapter Five: Anomaly Detection and Classification using

CNNwGFC

5.1. Overview

This chapter tests the Convolutional Neural Networks with Global Feature Correlation

(CNNwGFC) model, which is an enhanced Convolutional Neural Networks model, in detecting

and classifying anomalies in network traffic data. In this chapter, the CNNwGFC model is tested

on two datasets: KDDCUP99 and UNSW-MB15 datasets. The performance results are compared

with Neural Network Model and the classic Convolutional Neural Network model. The results will

show the global feature correlation structure can be added to the CNN model in order to improve

the convolutional network's ability to achieve better network traffic anomaly classification results.

This chapter includes three other sections: Methodology, Findings and Summary. The

Methodology section includes a description of the CNNwGFC model; the datasets used for testing,

the experiment environment specifications, and the performance metrics used to evaluate the

CNNwGFC model. The Findings section shows the performance results of applying the

CNNwGFC on the datasets and compares its performance with Neural Networks and classic

Convolutional Neural Networks. The conclusion section includes a summary of the findings of

this chapter.

95

5.2. Methodology

The CNNwGFC detection model presented in this thesis makes use of CNN in order to extract

both global and local characteristics of the target data set. After going through some preliminary

processing, the raw data is then split into a training set and a testing set (70:30), as shown in Figure

(5-1). Through the use of the training set, the model is able to learn the traffic characteristics of a

variety of attacks. The data from the test set is then used to validate the accuracy of the CNNwGFC

detection model. Figure (5-1) presents a representation of the model's iterative learning process.

Figure 5-1: CNNwGFC model Training Process

96

5.2.1. CNNwGFC Model

CNN is a model of an artificial neural network that can be trained on a global scale and has many

stages. It can create particular network topologies for certain tasks, and after pre-processing the

data, it can learn general, abstract features and concepts from the pre-processed data. When dealing

with network traffic data, the traffic characteristics of each type of attack are converted to images

of two-dimensions. After that, a convolutional neural network is used to extract the local as well

as global features of the images to identify relevant traffic features indicating various types of

attacks.

Figure (5-2) shows the enhanced network structure, consisting of three convolutional layers, three

pooling layers, Global Feature Correlation layer, fully connected layer, and SoftMax classifier.

The input layer receives a two-dimensional matrix that is made of the characteristics of the

network's traffic, and the size of this matrix is what defines the size of the input vector. The

function of the convolution layer is to extract and map data from one plane to the next. At the same

time, the pooling layer functions as a fuzzy filter and is responsible for the extraction of secondary

features. Because the data on network traffic goes via the GFC structure in the final feature layer,

the feature mapping has been adjusted to extract the global characteristics that are relevant to the

situation. The fully connected layer is responsible for connecting all the features and pass the

results to the SoftMax function.

97

Figure 5-2: CNNwGFC Model

5.2.2. GFC Structure

This section details structure of the Global Feature Correlation (GFC) structure. Figure (5-3)

illustrates the local features of the GFC structure. In this thesis, the data flow is processed into

images of two-dimensions. The local characteristics of benign and abnormal traffic are markedly

different. However, the partial differences in features between different types of abnormal traffic

are not obvious and require macroscopic observation. The last feature layer of the model is added

to further optimize the mapping of features. The network structure design is shown in Figure (5-

3). The structure includes, three convolution operations, two matrix multiplications, residual skip

connection to prevent the vanishing gradient problem. The convolution with the RELU activation

function is used to produce normalized feature map. The matrix size is constant.

98

Figure 5-3: Global Feature Correlation Structure

Dimension of the feature map is generated from the CNN which is (𝐻 × 𝑊), where 𝐻 represents

height and 𝑊 represents width. This will result in 𝑥 ∈ 𝑅𝐻×𝑊, hence each 𝑥𝑖 has:

𝑓(𝑥𝑖 , 𝑦𝑗) = 𝑒𝑡(𝑥𝑖,𝑦𝑗)𝑔(𝑥𝑖,𝑦𝑗)
𝑇

 (5-1)

• 𝑓(𝑥𝑖 , 𝑦𝑗): Represents the similarity or influence function between two vectors x_i and y_j.

• 𝑒𝑡(𝑥𝑖,𝑦𝑗)𝑔(𝑥𝑖,𝑦𝑗)
𝑇

: Is an expression involving two vectors 𝑥𝑖 , 𝑦𝑗 and two functions t() and g()

used to compute the similarity value.

99

𝑦𝑖 =
1

∑ 𝑒𝑥𝑖𝑖
∑ 𝑓(𝑥𝑖 , 𝑦𝑗)𝐴𝑗 . 𝑖(𝑥𝑖) (5-2)

• 𝑦𝑖 : Represents the output value for a specific index i.

• ∑ 𝑒𝑥𝑖
𝑖 : This is the sum of exponential terms for all 𝑥𝑖values in the dataset.

• ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)𝐴𝑗 : This is the sum of terms involving a function 𝑓(𝑥𝑖 , 𝑦𝑗) for all possible

indices 𝑦𝑗 .

𝑍𝑖 = 𝑅𝑒𝑙𝑢(𝑊𝑧(𝑥𝑖 + 𝑦𝑖)) (5-3)

• 𝑍𝑖: Represents the output value for a specific index i.

• 𝑅𝑒𝑙𝑢: The Rectified Linear Unit activation function.

• 𝑊𝑧: Represents a weight matrix for the linear transformation.

• 𝑥𝑖𝑎𝑛𝑑 𝑦𝑖: These are input vectors for index i.

5.2.3. Datasets

The datasets used in this experiment are the KDDCUP99 and the UNSW-NB15 datasets. The

following procedures were applied on both datasets separately:

A) Data transformation

The symbolic values of "state", "proto", "service," as well as "attack_cat" were translated to

numeric values. For instance, "proto" attribute has three significant values which are "TCP,"

"UDP," and "ICMP”. These values were mapped to 1, 2, and 3, respectively, other values (IGMP,

SCTP, RDP) were mapped to 4. The processed features are merged with the unprocessed features.

B) Data normalization

Each attribute has a very different range of possible values. The dataset requires normalization in

order to be used. Because the data with high values have a large weight, the data with low values

have very little effect on the outcomes. As a consequence, part of the information in the initial data

100

set could be lost. For this, the values are normalized by the use of the linear transformation

represented by the following formula:

𝑓(𝑥) = {

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, 𝑥𝑚𝑎𝑥 ≠ 𝑥𝑚𝑖𝑛

0, 𝑥𝑚𝑎𝑥 ≠ 𝑥𝑚𝑖𝑛

 (5-4)

The transformation has two cases depending on whether x_max is equal to x_min or not:

If x_max is not equal to x_min (x_max ≠ x_min):

In this case, the function returns the normalized value of x within the range [x_min, x_max]. It

scales the input x to a value between 0 and 1 based on its position within the specified range. When

x is equal to x_min, the output is 0, and when x is equal to x_max, the output is 1.

If x_max is equal to x_min (x_max = x_min):

In this case, the function returns 0 for any input x. This means that the transformation is constant

and outputs 0 regardless of the input value.

101

5.2.4. Experiment Environment

The experiment was conducted on a server with Ubuntu 20.04 LTS. Python 3.10 was used as the

programming language, CUDA 10.2 and Pytorch1.10.1 were used for backend processing, and an

Nvidia GTX 1080 GPU with 11 Gigabytes of video RAM.

5.2.5. Evaluation Metrics

The metrics used to evaluate the model in this study are:

Accuracy: It measures the percentage of correct predictions made by the model out of the total

number of samples in the dataset. Here is the equation for accuracy:

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (5-5)

Precision: It evaluates the ability of a model to correctly identify positive samples (true positives)

from the total number of samples. Here is the equation for Precision:

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5-6)

Recall: It evaluates the ability of a model to correctly identify positive samples out of all the actual

positive samples in the dataset. Here is the equation for Recall:

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5-7)

where

• TP = The Number of True Positives

• TN = The Number of True Negatives

• FP = The Number of False Positives

• FN = The Number of False Negatives

102

5.3. Findings

The CNNwGFC model, Neural Network, and regular CNN were applied on the two data sets. In

the beginning, the experiment was performed on KDDCUP99, which is the most used dataset in

field of network intrusion and considered to be the benchmark. The evaluation metrics for the three

models were compared. The results of the experiments are presented in Figure (5-4) and Figure

(5-5). The CNNwGFC model presented in this study achieved an accuracy of 99.9 percent, which

is close to the accuracy achieved by the NN and classic CNN. Figure (5-4) shows a comparison of

three different models using the KDDCUP99 dataset.

Then, the same comparison experiment was performed on the UNSW-NB15 dataset, and the

experiment outcomes are presented in Figure (5-5) below. The tested CNNwGFC model achieved

better results when measured against a variety of assessment measures. CNNwGFC achieved

15.34 % higher accuracy than classic CNN. It achieved 15.39 % higher recall than classic CNN.

It achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is

higher by 7.16 than the highest from the literature [195].

Model

Figure 5-4: Evaluation Metric Results on the KDDCUP99 dataset.

P
er

ce
n
ta

g
e

103

Figure 5-5: Evaluation Metric Results on the UNSW-NB15 dataset.

P
er

ce
n
ta

g
e

Model

104

5.4. Summary

This chapter tested the CNNwGFC model, which is an enhanced CNN model to detect and classify

anomalies in network traffic data. The CNNwGFC model was tested on two datasets: KDDCUP99

and UNSW-NB15 datasets. The performance results were compared with Neural Network Model

and the classic Convolutional Neural Network model. The results show that the CNNwGFC model

achieved on the KDDCUP99 dataset an accuracy of 99.9%, which is close to the accuracy achieved

by the NN and classic CNN. However, the CNNwGFC model achieved better results when

measured against various performance metrics on the UNSW-NB15 dataset. CNNwGFC achieved

15.34% higher accuracy than classic CNN. It achieved 15.39% higher recall than classic CNN. It

achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is

higher by 7.16 than the highest from the literature [195]. This shows that the global feature

correlation structure can be added to the CNN model in order to improve the convolutional

network's ability to achieve better network traffic anomaly classification results.

105

6. Chapter Six: Conclusions and Future Work

6.1. Conclusions

In conclusion, the Internet of Things (IoT) enables us to link practically everything, including

people, devices, and physical items, to the internet, which significantly impacts our society. In the

following years, networked devices will be considerably increased, which means that the Internet

of Things will offer significant problems to the information security industry. This thesis identified

the challenges and gaps in securing the Internet of Things networks. The challenges are network

size, the number of devices, the human factor, and the complexity of IoT networks. The gaps

identified include the lack of research on the following:

• Signature-based intrusion detection systems use for anomaly detection.

• Modelling input parameters required for anomaly detection in IoT networks.

• Comparison of the performance of machine learning algorithms on standard and real IoT

datasets.

• High performance machine learning model to classify anomalies in the IoT networks.

This thesis explored applying Gaussian Naive Bayes, Support Vector Machine, Decision Trees

and Neural Networks machine learning models in anomaly binary classification in the

KDDCUP99 and IoT datasets. This thesis showed that when applying the machine learning

algorithms on a real IoT dataset, the performance results differ from the performance on the

KDDCUP99. The results show that NN and DT perform similarly on KDDCUP and IoT datasets.

On the other hand, SVM and NB have a difference of 8% in accuracy. It also shows that SVM and

NB have more than a 7% difference in precision.

106

When using all the features of the KDDCUP99 or IoT datasets, the findings show potential for

using Decision Trees, Support Vector Machines in anomaly detection. However, in reality, only

some of the features in the KDDCUP99 dataset are available when capturing network traffic. In

addition, using all the features increases the resources and execution time required to generate the

results.

This thesis compared the binary classification performance of the Neural Network, Support Vector

Machine, Decision Tree, and Naïve Bayes machine learning models in anomaly detection when

using all KDDCUP99 dataset features and five selected features as input. The selected input

features are protocol type, service type, total length, count of connections from the same IP and

number of connections from the same destination port. The results show that the applied machine

learning modes can distinguish between normal and abnormal attacks using all or five features

only. The Neural Network, Support Vector Machine, and Decision Tree maintained the same

performance. The Naïve Bayes achieved better performance when using only five features. The

benefit of using only five features is the reduced time required to train and process data by the

machine learning model. The results show a reduction in time required by 58% on average. Hence,

it is concluded that using only five features; the tested machine learning models can distinguish

between normal and abnormal traffic on the KDDCUP99 dataset in a reduced time of 58% on

average.

This thesis tested the CNNwGFC model, which is an enhanced CNN model, in detecting and

classifying anomalies in network traffic data. The CNNwGFC model was tested on two datasets:

KDDCUP99 and UNSW-NB15 datasets. The performance results were compared with Neural

Network Model and the classic Convolutional Neural Network model. The results show that the

CNNwGFC model achieved on the KDDCUP99 dataset an accuracy of 99.9%, which is close to

the accuracy achieved by the NN and classic CNN. The CNNwGFC model achieved better results

when measured against various performance metrics on the UNSW-NB15. CNNwGFC achieved

15.34% higher accuracy than classic CNN. It achieved 15.93% higher recall than classic CNN. It

achieved 15.59% higher procession than classic CNN. The CNNwGFC accuracy (96.24%) is

higher by 7.16 than the highest from the literature. This shows that the global feature correlation

107

structure can be added to the CNN model to improve the convolutional network's ability to achieve

better network traffic anomaly classification results.

6.2. Future Work

Throughout the work from each chapter, further work can be done to achieve more information.

The future investigations recommended are as follows:

• The testing was done on the popular machine learning algorithms; however, further testing

needs to be done on other classification machine learning models such as Linear

Classifiers, Logistic Regression, Perceptron, Quadratic Classifiers, K-Means Clustering,

Boosting, Random Forest (RF) machine learning algorithms.

• Add more datasets to the testing, such as NSL-KDD and UKM-IDS20 and other real

network IoT datasets. These datasets will be added to confirm further the performance of

the machine learning models, dimensionality reduction results, and the performance of the

CNNwGFC model.

• Test and compare the performance of the CNNwGFC before and after the dataset input

size reduction. This will help determine whether dimensionality reduction benefits the

CNNwGFC machine learning model.

108

References

[1] S. Thudumu, pp. Branch, J. Jin, and J. J. Singh, “A comprehensive survey of anomaly

detection techniques for high dimensional big data”, Journal of Big Data, vol. 7, no. 1, pp.

1–30, 2020.

[2] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai, “An embedding approach to anomaly detection”,

in 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 2016, pp. 385–

396.

[3] A. K. Ray and A. Bagwari, “IoT based Smart home: Security Aspects and security

architecture”, in 2020 IEEE 9th international conference on communication systems and

network technologies (CSNT), 2020, pp. 218–222.

[4] H. Salehi and R. Burgueño, “Emerging artificial intelligence methods in structural

engineering”, Engineering structures, vol. 171, pp. 170–189, 2018.

[5] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in

Internet of Things: The road ahead”, Computer networks, vol. 76, pp. 146–164, 2015.

[6] D. Goodin and A. Technica, “9 baby monitors wide open to hacks that expose users’ most

private moments”, Ars Technica. https://arstechnica.com/information-

technology/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-

moments/ (accessed Dec. 28, 2022).

[7] J. Hirsch, “Hackers can now hitch a ride on car computers”, Los Angeles Times.

http://www.latimes.com/business/autos/la-fi-hy-car-hacking-20150914-story.html

(accessed Dec. 28, 2022).

[8] K. Atherton, “Hackers can tap into hospital drug pumps to serve lethal doses to patients”,

Popular Science. http://tinyurl.com/qfscthv (accessed Dec. 28, 2022).

109

[9] D. Pauli, “Hacked terminals capable of causing pacemaker deaths”, iTnews.

http://tinyurl.com/ycl4z9xf (accessed Dec. 28, 2022).

[10] J. T. Senders, M. M. Zaki, A. V. Karhade, B. Chang, W. B. Gormley, M. L. Broekman, T.

R. Smith and O. Arnaout, “An introduction and overview of machine learning in

neurosurgical care”, Acta neurochirurgica, vol. 160, no. 1, pp. 29–38, 2018.

[11] S. Kotsiantis, I. Zaharakis and P. Pintelas, “Machine Learning: A Review of Classification

and Combining Techniques,” Artificial Intelligence Review, vol. 26, no. 3, pp. 159–190.

[12] B. Mahesh, “Machine learning algorithms-a review”, International Journal of Science and

Research (IJSR), vol. 9, pp. 381–386, 2020.

[13] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine learning algorithms for

wireless sensor networks: A survey”, Information Fusion, vol. 49, pp. 1–25, 2019.

[14] S. Ray, “A quick review of machine learning algorithms”, in 2019 International conference

on machine learning, big data, cloud and parallel computing (COMITCon), 2019, pp. 35–

39.

[15] F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, and J.

Akinjobi, “Supervised machine learning algorithms: classification and comparison”,

International Journal of Computer Trends and Technology (IJCTT), vol. 48, no. 3, pp. 128–

138, 2017.

[16] E.-A. Minastireanu and G. Mesnita, “An Analysis of the Most Used Machine Learning

Algorithms for Online Fraud Detection”, Informatica Economica, vol. 23, no. 1, 2019.

[17] S. Eltanbouly, M. Bashendy, N. AlNaimi, Z. Chkirbene, and A. Erbad, “Machine learning

techniques for network anomaly detection: A survey”, in 2020 IEEE International

Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 2020, pp. 156–162.

110

[18] I. Arel, D. C. Rose, and T. P. Karnowski, “Research frontier: deep machine learning--a new

frontier in artificial intelligence research”, IEEE computational intelligence magazine, vol.

5, no. 4, pp. 13–18, 2010.

[19] W. Yamany, M. Fawzy, A. Tharwat, and A. E. Hassanien, “Moth-flame optimization for

training multi-layer perceptrons”, in 2015 11th International computer engineering

Conference (ICENCO), 2015, pp. 267–272.

[20] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in

classification”, arXiv, 2017.

[21] A. Segatori, F. Marcelloni, and W. Pedrycz, “On Distributed Fuzzy Decision Trees for Big

Data”, IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 174–192, 2018.

[22] W.-Y. Loh, “Classification and regression trees”, Wiley interdisciplinary reviews: data

mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.

[23] A. E. Mohamed, “Comparative study of four supervised machine learning techniques for

classification”, International Journal of Applied, vol. 7, no. 2, pp. 1–15, 2017.

[24] T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and L. Plümer, “Early

detection and classification of plant diseases with support vector machines based on

hyperspectral reflectance”, Computers and electronics in agriculture, vol. 74, no. 1, pp. 91–

99, 2010.

[25] I. Rish and Others, “An empirical study of the naive Bayes classifier”, in IJCAI 2001

workshop on empirical methods in artificial intelligence, 2001, vol. 3, pp. 41–46.

[26] J. M. McNamara, R. F. Green, and O. Olsson, “Bayes’ theorem and its applications in animal

behaviour”, Oikos, vol. 112, no. 2, pp. 243–251, 2006.

111

[27] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Depth-wise separable convolutions and multi-level

pooling for an efficient spatial CNN-based steganalysis”, IEEE Transactions on Information

Forensics and Security, vol. 15, pp. 1138–1150, 2019.

[28] L. Chen, S. Wang, W. Fan, J. Sun, and S. Naoi, “Beyond human recognition: A CNN-based

framework for handwritten character recognition”, in 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), 2015, pp. 695–699.

[29] J. Patterson and A. Gibson, Deep learning: A practitioner’s approach. Sebastopol, CA:

O'Reilly, 2017.

[30] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural

network”, in 2017 International Conference on Engineering and Technology (ICET), 2017,

pp. 1–6.

[31] M. Salomon, R. Couturier, C. Guyeux, J.-F. Couchot, and J. M. Bahi, “Steganalysis via a

convolutional neural network using large convolution filters for embedding process with

same stego key: A deep learning approach for telemedicine”, European Research in

Telemedicine/La Recherche Européenne en Télémédecine, vol. 6, no. 2, pp. 79–92, 2017.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–90,

2017.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, in Advances in Neural Information Processing Systems,

2012, vol. 25.

[34] D. Yu, H. Wang, pp. Chen, and Z. Wei, “Mixed pooling for convolutional neural networks”,

in International conference on rough sets and knowledge technology, 2014, pp. 364–375.

112

[35] U. Ravale, N. Marathe, and P. Padiya, “Feature selection based hybrid anomaly intrusion

detection system using K means and RBF kernel function”, Procedia Computer Science, vol.

45, pp. 428–435, 2015.

[36] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “Multiple self-organizing maps for

intrusion detection”, in Proceedings of the 23rd national information systems security

conference, 2000, pp. 16–19.

[37] Y. Sani, A. Mohamedou, K. Ali, A. Farjamfar, M. Azman, and S. Shamsuddin, “An

overview of neural networks use in anomaly intrusion detection systems”, in 2009 IEEE

Student Conference on Research and Development (SCOReD), 2009, pp. 89–92.

[38] H. Mazzawi, G. Dalal, D. Rozenblatz, L. Ein-Dorx, M. Niniox, and O. Lavi, “Anomaly

detection in large databases using behavioral patterning”, in 2017 IEEE 33rd International

Conference on Data Engineering (ICDE), 2017, pp. 1140–1149.

[39] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense mechanisms

countering the DoS and DDoS problems”, ACM Computing Surveys (CSUR), vol. 39, no. 1,

pp. 3-es, 2007.

[40] L.-C. Chen, T. A. Longstaff, and K. M. Carley, “Characterization of defense mechanisms

against distributed denial of service attacks”, Computers & Security, vol. 23, no. 8, pp. 665–

678, 2004.

[41] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor, “Validation of sensor alert correlators”,

IEEE Security & Privacy, vol. 1, no. 1, pp. 46–56, 2003.

[42] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry, “Attacks

against Process Control Systems: Risk Assessment, Detection, and Response”, in

Proceedings of the 6th ACM Symposium on Information, Computer and Communications

Security, Hong Kong, China, 2011, pp. 355–366.

113

[43] Z. A. Baig, S. Khan, S. Ahmed, and M. H. Sqalli, “A selective parameter-based evolutionary

technique for network intrusion detection”, in 2011 11th International Conference on

Intelligent Systems Design and Applications, 2011, pp. 65–71.

[44] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion detection

systems: A review”, Applied soft computing, vol. 10, no. 1, pp. 1–35, 2010.

[45] S. Roschke, F. Cheng, and C. Meinel, “An advanced IDS management architecture”, Journal

of Information Assurance and Security, vol. 5, pp. 246–255, 2010.

[46] M. Baqer and A. I. Khan, “Energy-efficient pattern recognition approach for wireless sensor

networks”, in 2007 3rd International Conference on Intelligent Sensors, Sensor Networks

and Information, 2007, pp. 509–514.

[47] C. R. Haag, G. B. Lamont, pp. D. Williams, and G. L. Peterson, “An artificial immune

system-inspired multiobjective evolutionary algorithm with application to the detection of

distributed computer network intrusions”, in International Conference on Artificial Immune

Systems, 2007, pp. 420–435.

[48] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A

comprehensive review”, Journal of Network and Computer Applications, vol. 36, no. 1, pp.

16–24, 2013.

[49] J. Allen, A. Christie, W. Fithen, J. McHugh, and J. Pickel, “State of the practice of intrusion

detection technologies”, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst,

2000.

[50] E. H. Spafford and D. Zamboni, “Intrusion detection using autonomous agents”, Computer

networks, vol. 34, no. 4, pp. 547–570, 2000.

114

[51] A. Householder, A. Manion, L. Pesante, G. M. Weaver, and R. Thomas, “Managing the

threat of denial-of-service attacks”, Carnegie Mellon University, Pittsburgh, PA, USA, Tech.

Rep, 2001.

[52] N. Hubballi and V. Suryanarayanan, “False alarm minimization techniques in signature-

based intrusion detection systems: A survey”, Computer Communications, vol. 49, pp. 1–17,

2014.

[53] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural networks and

support vector machines”, in Proceedings of the 2002 International Joint Conference on

Neural Networks. IJCNN’02 (Cat. No. 02CH37290), 2002, vol. 2, pp. 1702–1707.

[54] D. Novikov, R. V. Yampolskiy, and L. Reznik, “Anomaly detection based intrusion

detection”, in Third international conference on information technology: new generations

(ITNG’06), 2006, pp. 420–425.

[55] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, M. Embrechts, and Others, “Network-based

intrusion detection using neural networks”, Intelligent Engineering Systems through

Artificial Neural Networks, vol. 12, no. 1, pp. 579–584, 2002.

[56] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible evaluation of anomaly-

based intrusion-detection methods”, IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 40, no. 5, pp. 516–524, 2010.

[57] S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15

datasets using deep learning in IoT”, Procedia Computer Science, vol. 167, pp. 1561–1573,

2020.

[58] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole, “Benchmarking datasets for

anomaly-based network intrusion detection: KDD CUP 99 alternatives”, in 2018 IEEE 3rd

International Conference on Computing, Communication and Security (ICCCS), 2018, pp.

1–8.

115

[59] D. Jing and H.-B. Chen, “SVM based network intrusion detection for the UNSW-NB15

dataset”, in 2019 IEEE 13th international conference on ASIC (ASICON), 2019, pp. 1–4.

[60] A. Husain, A. Salem, C. Jim, and G. Dimitoglou, “Development of an efficient network

intrusion detection model using extreme gradient boosting (xgboost) on the unsw-nb15

dataset”, in 2019 IEEE International Symposium on Signal Processing and Information

Technology (ISSPIT), 2019, pp. 1–7.

[61] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set)”, in 2015 Military Communications and

Information Systems Conference (MilCIS), 2015, pp. 1–6.

[62] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-based modeling for

fraud and intrusion detection: Results from the JAM project”, in Proceedings DARPA

Information Survivability Conference and Exposition. DISCEX’00, 2000, vol. 2, pp. 130–

144.

[63] K. D. D. Cup, “http://kdd. ics. uci. edu/databases/kddcup99/kddcup99. html”, The UCI KDD

Archive, 1999.

[64] N. N. M. Yusof and N. S. Sulaiman, “Cyber attack detection dataset: A review”, in Journal

of Physics: Conference Series, 2022, vol. 2319, p. 012029.

[65] B. S. Bhati, C. S. Rai, B. Balamurugan, and F. Al-Turjman, “An intrusion detection scheme

based on the ensemble of discriminant classifiers”, Computers & Electrical Engineering,

vol. 86, p. 106742, 2020.

[66] R. D. Ravipati and M. Abualkibash, “Intrusion detection system classification using different

machine learning algorithms on KDD-99 and NSL-KDD datasets-a review paper”,

International Journal of Computer Science & Information Technology (IJCSIT) Vol, vol. 11,

2019.

116

[67] R. Magán-Carrión, D. Urda, I. Díaz-Cano, and B. Dorronsoro, “Towards a reliable

comparison and evaluation of network intrusion detection systems based on machine

learning approaches”, Applied Sciences, vol. 10, no. 5, p. 1775, 2020.

[68] D. A. Cieslak and N. V. Chawla, “A framework for monitoring classifiers’ performance:

when and why failure occurs?”, Knowledge and Information Systems, vol. 18, no. 1, pp. 83–

108, 2009.

[69] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set)”, in 2015 military communications and

information systems conference (MilCIS), 2015, pp. 1–6.

[70] N. Moustafa and J. Slay, “The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data

set”, Information Security Journal: A Global Perspective, vol. 25, no. 1–3, pp. 18–31, 2016.

[71] M. Lion and Y. Shahar, “Implementation and evaluation of a multivariate abstraction-based,

interval-based dynamic time-warping method as a similarity measure for longitudinal

medical records”, Journal of Biomedical Informatics, vol. 123, p. 103919, 2021.

[72] S. Wu, H. Lin, Y. Gao, D. Lu, and Others, “Finding frequent items in time decayed data

streams”, in Asia-Pacific Web Conference, 2016, pp. 17–29.

[73] Y. Yang, Y. Huang, J. Cao, X. Ma, and J. Lu, “Design of a sliding window over distributed

and asynchronous event streams”, IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 10, pp. 2551–2560, 2013.

[74] M. Aljubran, J. Ramasamy, M. Albassam, and A. Magana-Mora, “Deep learning and time-

series analysis for the early detection of lost circulation incidents during drilling operations”,

IEEE Access, vol. 9, pp. 76833–76846, 2021.

117

[75] A. Saas, A. Guitart, and A. Periánez, “Discovering playing patterns: Time series clustering

of free-to-play game data”, in 2016 IEEE Conference on Computational Intelligence and

Games (CIG), 2016, pp. 1–8.

[76] E. Kabir, J. Hu, H. Wang, and G. Zhuo, “A novel statistical technique for intrusion detection

systems”, Future Generation Computer Systems, vol. 79, pp. 303–318, 2018.

[77] X. Ma and Y. Chen, “DDoS detection method based on chaos analysis of network traffic

entropy”, IEEE Communications Letters, vol. 18, no. 1, pp. 114–117, 2013.

[78] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman, “Detecting volumetric

attacks on lot devices via sdn-based monitoring of mud activity”, in Proceedings of the 2019

ACM Symposium on SDN Research, 2019, pp. 36–48.

[79] M. A. Jamshed, A. Nauman, M. A. B. Abbasi, and S. W. Kim, “Antenna Selection and

Designing for THz Applications: Suitability and Performance Evaluation: A Survey”, IEEE

Access, vol. 8, pp. 113246–113261, 2020.

[80] F. Zhou and Y. Chai, “Near-sensor and in-sensor computing”, Nature Electronics, vol. 3, no.

11, pp. 664–671, 2020.

[81] J. C. Talwana and H. J. Hua, “Smart World of Internet of Things (IoT) and Its Security

Concerns”, in 2016 IEEE International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), 2016, pp. 240–245.

[82] T. Alam, “A Reliable Communication Framework and Its Use in Internet of Things (IoT)”,

vol. 3, 05 2018.

[83] L.-D. Radu, “Disruptive technologies in smart cities: a survey on current trends and

challenges”, Smart Cities, vol. 3, no. 3, pp. 1022–1038, 2020.

118

[84] J. Čapek, “Cybersecurity and internet of things”, IDIMT-2018 Strategic Modeling in

Management, Economy and Society, 2018.

[85] M. Shirvanimoghaddam et al., “Towards a Green and Self-Powered Internet of Things Using

Piezoelectric Energy Harvesting”, IEEE Access, vol. 7, pp. 94533–94556, 2019.

[86] Y. Wang, H. Wang, J. Xuan, and D. Y. C. Leung, “Powering future body sensor network

systems: A review of power sources”, Biosensors and Bioelectronics, vol. 166, p. 112410,

2020.

[87] K. J. Singh and D. S. Kapoor, “Create your own Internet of things: A survey of IoT

platforms”, IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 57–68, 2017.

[88] H. Teymourian et al., “Wearable electrochemical sensors for the monitoring and screening

of drugs”, ACS sensors, vol. 5, no. 9, pp. 2679–2700, 2020.

[89] G. B. Rehm et al., “Leveraging IoTs and machine learning for patient diagnosis and

ventilation management in the intensive care unit”, IEEE Pervasive Computing, vol. 19, no.

3, pp. 68–78, 2020.

[90] F. Restuccia, S. K. Das, and J. Payton, “Incentive mechanisms for participatory sensing:

Survey and research challenges”, ACM Transactions on Sensor Networks (TOSN), vol. 12,

no. 2, pp. 1–40, 2016.

[91] A. P. Ingle and S. D. Ghode, “Internet of Things (IoT): Vision, Review, Drivers of IoT,

Sensors Nodes, Communication Technologies and Architecture”, 2017.

[92] B. B. Gupta and M. Quamara, “An overview of Internet of Things (IoT): Architectural

aspects, challenges, and protocols”, Concurrency and Computation: Practice and

Experience, vol. 32, no. 21, p. e4946, 2020.

119

[93] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for internet of

things: a survey”, IEEE Internet of things journal, vol. 3, no. 1, pp. 70–95, 2015.

[94] R. Stephen and L. Arockiam, “Intrusion detection system to detect sinkhole attack on RPL

protocol in Internet of Things”, International Journal of Electrical Electronics and

Computer Science, vol. 4, no. 4, pp. 16–20, 2017.

[95] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time intrusion detection in the Internet

of Things”, Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[96] L. Santos, C. Rabadao, and R. Gonçalves, “Intrusion detection systems in Internet of Things:

A literature review”, in 2018 13th Iberian Conference on Information Systems and

Technologies (CISTI), 2018, pp. 1–7.

[97] D. Shreenivas, S. Raza, and T. Voigt, “Intrusion detection in the RPL-connected 6LoWPAN

networks”, in Proceedings of the 3rd ACM international workshop on IoT privacy, trust, and

security, 2017, pp. 31–38.

[98] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack detection in internet of

things”, International Journal of Computer Applications, vol. 121, no. 9, 2015.

[99] C. Jun and C. Chi, “Design of complex event-processing IDS in internet of things”, in 2014

sixth international conference on measuring technology and mechatronics automation,

2014, pp. 226–229.

[100] D. H. Summerville, K. M. Zach, and Y. Chen, “Ultra-lightweight deep packet anomaly

detection for Internet of Things devices”, in 2015 IEEE 34th international performance

computing and communications conference (IPCCC), 2015, pp. 1–8.

[101] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis—A system for knowledge-driven

adaptable intrusion detection for the Internet of Things”, in 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS), 2017, pp. 656–666.

120

[102] N. K. Thanigaivelan, E. Nigussie, R. K. Kanth, S. Virtanen, and J. Isoaho, “Distributed

internal anomaly detection system for Internet-of-Things”, in 2016 13th IEEE annual

consumer communications & networking conference (CCNC), 2016, pp. 319–320.

[103] D. Oh, D. Kim, and W. W. Ro, “A malicious pattern detection engine for embedded security

systems in the Internet of Things”, Sensors, vol. 14, no. 12, pp. 24188–24211, 2014.

[104] P. Ioulianou, V. Vasilakis, I. Moscholios, and M. Logothetis, “A signature-based intrusion

detection system for the internet of things”, Information and Communication Technology

Form, 2018.

[105] P. Pudil and J. Novovičová, “Novel methods for feature subset selection with respect to

problem knowledge”, in Feature extraction, construction and selection, Springer, 1998, pp.

101–116.

[106] L. Zhang, F. Restuccia, T. Melodia, and S. M. Pudlewski, “Learning to detect and mitigate

cross-layer attacks in wireless networks: framework and applications”, in 2017 IEEE

Conference on Communications and Network Security (CNS), pp. 1–9.

[107] R.-H. Hwang, M.-C. Peng, V.-L. Nguyen, and Y.-L. Chang, “An LSTM-based deep learning

approach for classifying malicious traffic at the packet level”, Applied Sciences, vol. 9, no.

16, p. 3414, 2019.

[108] D. Arivudainambi, V. K. Ka, and S. Sibi Chakkaravarthy, “LION IDS: A meta-heuristics

approach to detect DDoS attacks against Software-Defined Networks”, Neural Computing

and Applications, vol. 31, no. 5, pp. 1491–1501, 2019.

[109] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S.

Venkatraman, “Deep learning approach for intelligent intrusion detection system”, IEEE

Access, vol. 7, pp. 41525–41550, 2019.

121

[110] O. Faker and E. Dogdu, “Intrusion detection using big data and deep learning techniques”,

in Proceedings of the 2019 ACM Southeast Conference, 2019, pp. 86–93.

[111] W. Anani and J. Samarabandu, “Comparison of recurrent neural network algorithms for

intrusion detection based on predicting packet sequences”, in 2018 IEEE Canadian

Conference on Electrical & Computer Engineering (CCECE), 2018, pp. 1–4.

[112] H. Yao, D. Fu, P. Zhang, M. Li, and Y. Liu, “MSML: A novel multilevel semi-supervised

machine learning framework for intrusion detection system”, IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 1949–1959, 2018.

[113] Z. Li, A. L. G. Rios, G. Xu, and L. Trajković, “Machine learning techniques for classifying

network anomalies and intrusions”, in 2019 IEEE international symposium on circuits and

systems (ISCAS), 2019, pp. 1–5.

[114] E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap, “A supervised

intrusion detection system for smart home IoT devices. IEEE Internet Things J. 6, 9042--

9053 (2019)’. 2019.

[115] J. Li, Z. Zhao, R. Li, and H. Zhang, “Ai-based two-stage intrusion detection for software

defined iot networks”, IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2093–2102, 2018.

[116] W. Alhakami, A. ALharbi, S. Bourouis, R. Alroobaea, and N. Bouguila, “Network anomaly

intrusion detection using a nonparametric Bayesian approach and feature selection”, IEEE

Access, vol. 7, pp. 52181–52190, 2019.

[117] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a lightweight intrusion detection

system for the internet of things”, IEEE Access, vol. 7, pp. 42450–42471, 2019.

[118] A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application of deep learning to real-time Web

intrusion detection”, IEEE Access, vol. 8, pp. 70245–70261, 2020.

122

[119] M. Roopak, G. Y. Tian, and J. Chambers, “An intrusion detection system against ddos

attacks in iot networks”, in 2020 10th annual computing and communication workshop and

conference (CCWC), 2020, pp. 0562–0567.

[120] F. Jiang et al., “Deep learning based multi-channel intelligent attack detection for data

security”, IEEE transactions on Sustainable Computing, vol. 5, no. 2, pp. 204–212, 2018.

[121] B. Susilo and R. F. Sari, “Intrusion detection in IoT networks using deep learning algorithm”,

Information, vol. 11, no. 5, p. 279, 2020.

[122] J. Cui, J. Long, E. Min, Q. Liu, and Q. Li, “Comparative Study of CNN and RNN for Deep

Learning Based Intrusion Detection System”, in Cloud Computing and Security, 2018, pp.

159–170.

[123] I. H. Sarker, “Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions”, SN Computer Science, vol. 2, no. 6, pp. 1–20, 2021.

[124] O. Voican, “Credit Card Fraud Detection using Deep Learning Techniques”, Informatica

Economica, vol. 25, no. 1, 2021.

[125] L. Liu et al., “Deep learning for generic object detection: A survey”, International journal

of computer vision, vol. 128, no. 2, pp. 261–318, 2020.

[126] C. Janiesch, pp. Zschech, and K. Heinrich, “Machine learning and deep learning”, Electronic

Markets, vol. 31, no. 3, pp. 685–695, 2021.

[127] M. Tayefi et al., “Challenges and opportunities beyond structured data in analysis of

electronic health records”, Wiley Interdisciplinary Reviews: Computational Statistics, vol.

13, no. 6, p. e1549, 2021.

123

[128] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main developments

and technology trends in data science, machine learning, and artificial intelligence”,

Information, vol. 11, no. 4, pp. 193, 2020.

[129] S. Naseer, R. Faizan Ali, pp. D. D. Dominic, and Y. Saleem, “Learning representations of

network traffic using deep neural networks for network anomaly detection: A perspective

towards oil and gas IT infrastructures”, Symmetry, vol. 12, no. 11, p. 1882, 2020.

[130] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on application of machine

learning for Internet of Things”, International Journal of Machine Learning and

Cybernetics, vol. 9, no. 8, pp. 1399–1417, 2018.

[131] V. U. J, S. Roy, and P. B. Honnavalli, ‘Correlative Analysis of Combined Machine Learning

Classifiers on Anomaly-based Intrusion Detection Systems’, in 2021 IEEE 2nd International

Conference on Technology, Engineering, Management for Societal impact using Marketing,

Entrepreneurship and Talent (TEMSMET), 2021, pp. 1–6.

[132] T. H. Hai and L. H. Nam, “A Practical Comparison of Deep Learning Methods for Network

Intrusion Detection”, in 2021 International Conference on Electrical, Communication, and

Computer Engineering (ICECCE), 2021, pp. 1–6.

[133] T. S. Pooja and P. Shrinivasacharya, “Evaluating neural networks using Bi-Directional

LSTM for network IDS (intrusion detection systems) in cyber security”, Global Transitions

Proceedings, vol. 2, no. 2, pp. 448–454, 2021.

[134] R. Biswas and S. Roy, “Botnet traffic identification using neural networks”, Multimedia

Tools and Applications, vol. 80, no. 16, pp. 24147–24171, 2021.

[135] F. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “Intrusion detection systems using long

short-term memory (LSTM)”, Journal of Big Data, vol. 8, no. 1, pp. 1–16, 2021.

124

[136] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional LSTM deep learning

approach for intrusion detection”, Expert Systems with Applications, vol. 185, p. 115524,

2021.

[137] M. S. ElSayed, N.-A. Le-Khac, M. A. Albahar, and A. Jurcut, “A novel hybrid model for

intrusion detection systems in SDNs based on CNN and a new regularization technique”,

Journal of Network and Computer Applications, vol. 191, p. 103160, 2021.

[138] C. Joshi, R. K. Ranjan, and V. Bharti, “A Fuzzy Logic based feature engineering approach

for Botnet detection using ANN”, Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 9, pp. 6872–6882, 2022.

[139] H. Alyasiri, J. A. Clark, A. Malik, and R. de Fréin, “Grammatical Evolution for Detecting

Cyberattacks in Internet of Things Environments”, in 2021 International Conference on

Computer Communications and Networks (ICCCN), 2021, pp. 1–6.

[140] F. Hussain et al., “A framework for malicious traffic detection in IoT healthcare

environment”, Sensors, vol. 21, no. 9, p. 3025, 2021.

[141] I. Vaccari, S. Narteni, M. Aiello, M. Mongelli, and E. Cambiaso, “Exploiting Internet of

Things protocols for malicious data exfiltration activities”, IEEE Access, vol. 9, pp. 104261–

104280, 2021.

[142] I. Ullah and Q. H. Mahmoud, “Design and development of RNN anomaly detection model

for IoT networks”, IEEE Access, vol. 10, pp. 62722–62750, 2022.

[143] M. A. Almaiah et al., “Performance Investigation of Principal Component Analysis for

Intrusion Detection System Using Different Support Vector Machine Kernels”, Electronics,

vol. 11, no. 21, p. 3571, 2022.

125

[144] M. Belouch, S. El Hadaj, and M. Idhammad, “Performance evaluation of intrusion detection

based on machine learning using Apache Spark”, Procedia Computer Science, vol. 127, pp.

1–6, 2018.

[145] H.-H. Chen and Y.-J. Lee, “Distributed consensus reduced support vector machine”, in 2019

IEEE International Conference on Big Data (Big Data), 2019, pp. 5718–5727.

[146] C. Ioannou and V. Vassiliou, “Network Attack Classification in IoT Using Support Vector

Machines”, Journal of Sensor and Actuator Networks, vol. 10, no. 3, p. 58, 2021.

[147] S. Sapre, pp. Ahmadi, and K. Islam, “A robust comparison of the KDDCup99 and NSL-

KDD IoT network intrusion detection datasets through various machine learning

algorithms”, arXiv, 2019.

[148] W. Kawelah and A. Abdala, “A Comparative Study on Machine Learning Tools Using

WEKA and Rapid Miner with Classifier Algorithms C4. 5 and Decision Stump for Network

Intrusion Detection”, European Academic Research, vol. 7, pp. 852–861, 2019.

[149] D. A. Reddy, V. Puneet, S. S. R. Krishna, and S. Kranthi, “Network Attack Detection And

Classification using ANN Algorithm”, in 2022 6th International Conference on Computing

Methodologies and Communication (ICCMC), 2022, pp. 66–71.

[150] M. Maithem and G. A. Al-sultany, “Network intrusion detection system using deep neural

networks”, in Journal of Physics: Conference Series, 2021, vol. 1804, p. 012138.

[151] S. Wasi, S. Shams, S. Nasim, and A. Shafiq, “Intrusion Detection Using Deep Learning and

Statistical Data Analysis”, in 2019 4th International Conference on Emerging Trends in

Engineering, Sciences and Technology (ICEEST), 2019, pp. 1–5.

[152] T. Joachims, “Text categorization with support vector machines: Learning with many

relevant features”, in European conference on machine learning, 1998, pp. 137–142.

126

[153] D.-Y. Chiu and P.-J. Chen, “Dynamically exploring internal mechanism of stock market by

fuzzy-based support vector machines with high dimension input space and genetic

algorithm”, Expert Systems with Applications, vol. 36, no. 2, pp. 1240–1248, 2009.

[154] Z. Zhang, “Naïve Bayes classification in R”, Annals of translational medicine, vol. 4, no.

12, 2016.

[155] N. Kriegeskorte and T. Golan, “Neural network models and deep learning”, Current Biology,

vol. 29, no. 7, pp. R231–R236, 2019.

[156] A. D. Dongare, R. R. Kharde, A. D. Kachare, and Others, “Introduction to artificial neural

network”, International Journal of Engineering and Innovative Technology (IJEIT), vol. 2,

no. 1, pp. 189–194, 2012.

[157] N. Gupta and Others, “Artificial neural network”, Network and Complex Systems, vol. 3,

no. 1, pp. 24–28, 2013.

[158] R. C. Williamson, A. J. Smola, and B. Scholkopf, “Generalization performance of

regularization networks and support vector machines via entropy numbers of compact

operators”, IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2516–2532, 2001.

[159] V. N. Vapnik, “An overview of statistical learning theory”, IEEE transactions on neural

networks, vol. 10, no. 5, pp. 988–999, 1999.

[160] J. H. Cho and P. U. Kurup, “Decision tree approach for classification and dimensionality

reduction of electronic nose data”, Sensors and Actuators B: Chemical, vol. 160, no. 1, pp.

542–548, 2011.

[161] G. T. Reddy et al., “Analysis of Dimensionality Reduction Techniques on Big Data”, IEEE

Access, vol. 8, pp. 54776–54788, 2020.

127

[162] S. Velliangiri, S. Alagumuthukrishnan, and Others, “A review of dimensionality reduction

techniques for efficient computation”, Procedia Computer Science, vol. 165, pp. 104–111,

2019.

[163] L. S. Moulin, A. P. A. da Silva, M. A. El-Sharkawi, and R. J. Marks, “Support vector and

multilayer perceptron neural networks applied to power systems transient stability analysis

with input dimensionality reduction”, in IEEE Power Engineering Society Summer Meeting,

2002, vol. 3, pp. 1308–1313.

[164] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive Bayes vs Decision Trees in Intrusion

Detection Systems”, in Proceedings of the 2004 ACM Symposium on Applied Computing,

Nicosia, Cyprus, 2004, pp. 420–424.

[165] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A comprehensive review

of dimensionality reduction techniques for feature selection and feature extraction”, Journal

of Applied Science and Technology Trends, vol. 1, no. 2, pp. 56–70, 2020.

[166] K. M. Majidha Fathima, “A Survey of the Exemplary Practices in Network Operations and

Management”, in Data Intelligence and Cognitive Informatics, 2021, pp. 181–194.

[167] D. Mistry, P. Modi, K. Deokule, A. Patel, H. Patki, and O. Abuzaghleh, “Network traffic

measurement and analysis”, in 2016 IEEE Long Island Systems, Applications and

Technology Conference (LISAT), 2016, pp. 1–7.

[168] D. Zhou, Z. Yan, Y. Fu, and Z. Yao, “A survey on network data collection”, Journal of

Network and Computer Applications, vol. 116, pp. 9–23, 2018.

[169] L. Han, Z. Guo, X. Huang, and X. Zeng, “A Multifunctional Full-Packet Capture and

Network Measurement System Supporting Nanosecond Timestamp and Real-Time

Analysis”, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–12, 2021.

128

[170] M. Felix, C. Safitri, and R. Mandala, “Framework for Analyzing Intruder Behavior of IoT

Cyber Attacks Based on Network Forensics by Deploying Honeypot Technology”, in 2022

5th International Conference on Information and Communications Technology (ICOIACT),

2022, pp. 423–428.

[171] A. Bhardwaj, V. Mangat, R. Vig, S. Halder, and M. Conti, “Distributed denial of service

attacks in cloud: State-of-the-art of scientific and commercial solutions”, Computer Science

Review, vol. 39, p. 100332, 2021.

[172] J. David and C. Thomas, “Discriminating flash crowds from DDoS attacks using efficient

thresholding algorithm”, Journal of Parallel and Distributed Computing, vol. 152, pp. 79–

87, 2021.

[173] A. Callado et al., “A Survey on Internet Traffic Identification”, IEEE Communications

Surveys & Tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[174] K. Sethi, Y. V. Madhav, R. Kumar, and P. Bera, “Attention based multi-agent intrusion

detection systems using reinforcement learning”, Journal of Information Security and

Applications, vol. 61, p. 102923, 2021.

[175] H. Jia, J. Liu, M. Zhang, X. He, and W. Sun, “Network intrusion detection based on IE-DBN

model”, Computer Communications, vol. 178, pp. 131–140, 2021.

[176] B. B. Borisenko, S. D. Erokhin, A. S. Fadeev, and I. D. Martishin, “Intrusion detection using

multilayer perceptron and neural networks with long short-term memory”, in 2021 Systems

of Signal Synchronization, Generating and Processing in Telecommunications

(SYNCHROINFO, 2021, pp. 1–6.

[177] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion detection of imbalanced network traffic based

on machine learning and deep learning”, Ieee Access, vol. 9, pp. 7550–7563, 2020.

129

[178] S. Aldhaheri, D. Alghazzawi, L. Cheng, B. Alzahrani, and A. Al-Barakati, “Deepdca: novel

network-based detection of iot attacks using artificial immune system”, Applied Sciences,

vol. 10, no. 6, p. 1909, 2020.

[179] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber

security intrusion detection: Approaches, datasets, and comparative study”, Journal of

Information Security and Applications, vol. 50, p. 102419, 2020.

[180] M. Ge, N. F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, “Towards a deep learning-driven

intrusion detection approach for Internet of Things”, Computer Networks, vol. 186, p.

107784, 2021.

[181] J. Malik, A. Akhunzada, I. Bibi, M. Imran, A. Musaddiq, and S. W. Kim, “Hybrid deep

learning: An efficient reconnaissance and surveillance detection mechanism in SDN”, IEEE

Access, vol. 8, pp. 134695–134706, 2020.

[182] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, “Deep learning-based intrusion

detection for IoT networks”, in 2019 IEEE 24th pacific rim international symposium on

dependable computing (PRDC), 2019, pp. 256–25609.

[183] N. Chouhan, A. Khan, and Others, “Network anomaly detection using channel boosted and

residual learning based deep convolutional neural network”, Applied Soft Computing, vol.

83, p. 105612, 2019.

[184] M. A. Ferrag and L. Maglaras, “DeepCoin: A novel deep learning and blockchain-based

energy exchange framework for smart grids”, IEEE Transactions on Engineering

Management, vol. 67, no. 4, pp. 1285–1297, 2019.

[185] T. Wu, H. Fan, H. Zhu, C. You, H. Zhou, and X. Huang, “Intrusion detection system

combined enhanced random forest with SMOTE algorithm”, EURASIP Journal on

Advances in Signal Processing, vol. 2022, no. 1, pp. 1–20, 2022.

130

[186] F. Li, A. Shinde, Y. Shi, J. Ye, X.-Y. Li, and W. Song, “System statistics learning-based IoT

security: Feasibility and suitability”, IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6396–

6403, 2019.

[187] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R. Sadeghi,

“DÏoT: A federated self-learning anomaly detection system for IoT”, in 2019 IEEE 39th

International conference on distributed computing systems (ICDCS), 2019, pp. 756–767.

[188] H. Alaiz-Moreton, J. Aveleira-Mata, J. Ondicol-Garcia, A. L. Muñoz-Castañeda, I. García,

and C. Benavides, “Multiclass classification procedure for detecting attacks on MQTT-IoT

protocol”, Complexity, vol. 2019, 2019.

[189] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection systems using a

feature selection method on the UNSW-NB15 dataset”, Journal of Big Data, vol. 7, no. 1,

pp. 1–20, 2020.

[190] T. Acharya, I. Khatri, A. Annamalai, and M. F. Chouikha, “Efficacy of Machine Learning-

Based Classifiers for Binary and Multi-Class Network Intrusion Detection”, in 2021 IEEE

International Conference on Automatic Control & Intelligent Systems (I2CACIS), 2021, pp.

402–407.

[191] A. M. Aleesa, M. Younis, A. A. Mohammed, and N. M. Sahar, “Deep-intrusion detection

system with enhanced UNSW-NB15 dataset based on deep learning techniques”, Journal of

Engineering Science and Technology, vol. 16, no. 1, pp. 711–727, 2021.

[192] S. M. Kasongo and Y. Sun, “A deep learning method with wrapper based feature extraction

for wireless intrusion detection system”, Computers & Security, vol. 92, p. 101752, 2020.

[193] R.-H. Dong, Y.-L. Shui, and Q.-Y. Zhang, “Intrusion Detection Model Based on Feature

Selection and Random Forest”, International Journal of Network Security, vol. 23, no. 6, pp.

985–996, 2021.

131

[194] J. O. Mebawondu, O. D. Alowolodu, J. O. Mebawondu, and A. O. Adetunmbi, “Network

intrusion detection system using supervised learning paradigm”, Scientific African, vol. 9,

p. e00497, 2020.

[195] Y. Yang, K. Zheng, C. Wu, and Y. Yang, “Improving the classification effectiveness of

intrusion detection by using improved conditional variational autoencoder and deep neural

network”, Sensors, vol. 19, no. 11, p. 2528, 2019.

[196] H.-C. Lin, P. Wang, K.-M. Chao, W.-H. Lin, and Z.-Y. Yang, “Ensemble Learning for

Threat Classification in Network Intrusion Detection on a Security Monitoring System for

Renewable Energy”, Applied Sciences, vol. 11, no. 23, p. 11283, 2021.

[197] E. García-Gonzalo, Z. Fernández-Muñiz, P. J. Garcia Nieto, A. Bernardo Sánchez, and M.

Menéndez Fernández, “Hard-rock stability analysis for span design in entry-type

excavations with learning classifiers”, Materials, vol. 9, no. 7, p. 531, 2016.

[198] R. M. Reffat, J. Gero, and W. Peng, “Using data mining on building maintenance during the

building life cycle”, in Proceedings of the 38th Australian & New Zealand Architectural

Science Association (ANZASCA) Conference, 2004, pp. 91–97.

[199] B. Gupta, A. Rawat, A. Jain, A. Arora, and N. Dhami, “Analysis of various decision tree

algorithms for classification in data mining”, International Journal of Computer

Applications, vol. 163, no. 8, pp. 15–19, 2017.

