515 research outputs found

    Numerical minimization of dirichlet laplacian eigenvalues of four-dimensional geometries

    Get PDF
    We develop the first numerical study in four dimensions of optimal eigenmodes associated with the Dirichlet Laplacian. We describe an extension of the method of fundamental solutions adapted to the four-dimensional context. Based on our numerical simulation and a postprocessing adapted to the identification of relevant symmetries, we provide and discuss the numerical description of the eighth first optimal domains.The work of the first author was partially supported by FCT, Portugal, through the program “Investigador FCT” with reference IF/00177/2013 and the scientific project PTDC/MATCAL/4334/2014. The work of the second author was supported by the ANR, through the projects COMEDIC, PGMO, and OPTIFORMinfo:eu-repo/semantics/publishedVersio

    Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces

    Get PDF
    Let (M,g)(M,g) be a connected, closed, orientable Riemannian surface and denote by λk(M,g)\lambda_k(M,g) the kk-th eigenvalue of the Laplace-Beltrami operator on (M,g)(M,g). In this paper, we consider the mapping (M,g)↊λk(M,g)(M, g)\mapsto \lambda_k(M,g). We propose a computational method for finding the conformal spectrum Λkc(M,[g0])\Lambda^c_k(M,[g_0]), which is defined by the eigenvalue optimization problem of maximizing λk(M,g)\lambda_k(M,g) for kk fixed as gg varies within a conformal class [g0][g_0] of fixed volume textrmvol(M,g)=1textrm{vol}(M,g) = 1. We also propose a computational method for the problem where MM is additionally allowed to vary over surfaces with fixed genus, Îł\gamma. This is known as the topological spectrum for genus Îł\gamma and denoted by Λkt(Îł)\Lambda^t_k(\gamma). Our computations support a conjecture of N. Nadirashvili (2002) that Λkt(0)=8πk\Lambda^t_k(0) = 8 \pi k, attained by a sequence of surfaces degenerating to a union of kk identical round spheres. Furthermore, based on our computations, we conjecture that Λkt(1)=8π23+8π(k−1)\Lambda^t_k(1) = \frac{8\pi^2}{\sqrt{3}} + 8\pi (k-1), attained by a sequence of surfaces degenerating into a union of an equilateral flat torus and k−1k-1 identical round spheres. The values are compared to several surfaces where the Laplace-Beltrami eigenvalues are well-known, including spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume one, the kk-th Laplace-Beltrami eigenvalue has a local maximum with value λk=4π2⌈k2⌉2(⌈k2⌉2−14)−12\lambda_k = 4\pi^2 \left\lceil \frac{k}{2} \right\rceil^2 \left( \left\lceil \frac{k}{2} \right\rceil^2 - \frac{1}{4}\right)^{-\frac{1}{2}}. Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.Comment: 43 pages, 18 figure

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Calculating Sparse and Dense Correspondences for Near-Isometric Shapes

    Get PDF
    Comparing and analysing digital models are basic techniques of geometric shape processing. These techniques have a variety of applications, such as extracting the domain knowledge contained in the growing number of digital models to simplify shape modelling. Another example application is the analysis of real-world objects, which itself has a variety of applications, such as medical examinations, medical and agricultural research, and infrastructure maintenance. As methods to digitalize physical objects mature, any advances in the analysis of digital shapes lead to progress in the analysis of real-world objects. Global shape properties, like volume and surface area, are simple to compare but contain only very limited information. Much more information is contained in local shape differences, such as where and how a plant grew. Sadly the computation of local shape differences is hard as it requires knowledge of corresponding point pairs, i.e. points on both shapes that correspond to each other. The following article thesis (cumulative dissertation) discusses several recent publications for the computation of corresponding points: - Geodesic distances between points, i.e. distances along the surface, are fundamental for several shape processing tasks as well as several shape matching techniques. Chapter 3 introduces and analyses fast and accurate bounds on geodesic distances. - When building a shape space on a set of shapes, misaligned correspondences lead to points moving along the surfaces and finally to a larger shape space. Chapter 4 shows that this also works the other way around, that is good correspondences are obtain by optimizing them to generate a compact shape space. - Representing correspondences with a “functional map” has a variety of advantages. Chapter 5 shows that representing the correspondence map as an alignment of Green’s functions of the Laplace operator has similar advantages, but is much less dependent on the number of eigenvectors used for the computations. - Quadratic assignment problems were recently shown to reliably yield sparse correspondences. Chapter 6 compares state-of-the-art convex relaxations of graphics and vision with methods from discrete optimization on typical quadratic assignment problems emerging in shape matching

    Extracting features from eigenfunctions: higher Cheeger constants and sparse eigenbasis approximation

    Full text link
    This thesis investigates links between the eigenvalues and eigenfunctions of the Laplace-Beltrami operator, and the higher Cheeger constants of smooth Riemannian manifolds, possibly with boundary. The higher Cheeger constants give a loose description of the major geometric features of a manifold. We obtain a new lower bound on the negative Laplace-Beltrami eigenvalues in terms of the corresponding higher Cheeger constant. The level sets of Laplace-Beltrami eigenfunctions sometimes reveal sets with small Cheeger ratio, representing well-separated features of the manifold. Some manifolds have their major features entwined across several eigenfunctions, and no single eigenfunction contains all the major features. In this case, there may exist carefully chosen linear combinations of the eigenfunctions, each with large values on a single feature, and small values elsewhere. We can then apply a soft-thresholding operator to these linear combinations to obtain new functions, each supported on a single feature. We show that the Cheeger ratios of the level sets of these functions also give an upper bound on the Laplace-Beltrami eigenvalues. We extend these level set results to nonautonomous dynamical systems, and show that the dynamic Laplacian eigenfunctions reveal sets with small dynamic Cheeger ratios. In a later chapter, we propose a numerical method for identifying features represented in eigenvectors arising from spectral clustering methods when those features are not cleanly represented in a single eigenvector. This method provides explicit candidates for the soft-thresholded linear combinations of eigenfunctions mentioned above. Many data clustering techniques produce collections of orthogonal vectors (e.g. eigenvectors) which contain connectivity information about the dataset. This connectivity information must be disentangled by some secondary procedure. We propose a method for finding an approximate sparse basis for the space spanned by the leading eigenvectors, by applying thresholding to linear combinations of eigenvectors. Our procedure is natural, robust and efficient, and it provides soft-thresholded linear combinations of the inputted eigenfunctions. We develop a new Weyl-inspired eigengap heuristic and heuristics based on the sparse basis vectors, suggesting how many eigenvectors to pass to our method
    • 

    corecore