14 research outputs found

    Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles

    Get PDF
    Pneumatic muscles (PMs)-driven robots become more and more popular in medical and rehabilitation field as the actuators are intrinsically complaint and thus are safer for patients than traditional rigid robots. This paper proposes a new compliance adaptation method of a soft ankle rehabilitation robot that is driven by four pneumatic muscles enabling three rotational movement degrees of freedom (DoFs). The stiffness of a PM is dominated by the nominal pressure. It is possible to control the robot joint compliance independently of the robot movement in task space. The controller is designed in joint space to regulate the compliance property of the soft robot by tuning the stiffness of each active link. Experiments in actual environment were conducted to verify the control scheme and results show that the robot compliance can be adjusted when provided changing nominal pressures and the robot assistance output can be regulated, which provides a feasible solution to implement the patient-cooperative training strategy

    Admittance-based controller design for physical human-robot interaction in the constrained task space

    Get PDF
    In this article, an admittance-based controller for physical human-robot interaction (pHRI) is presented to perform the coordinated operation in the constrained task space. An admittance model and a soft saturation function are employed to generate a differentiable reference trajectory to ensure that the end-effector motion of the manipulator complies with the human operation and avoids collision with surroundings. Then, an adaptive neural network (NN) controller involving integral barrier Lyapunov function (IBLF) is designed to deal with tracking issues. Meanwhile, the controller can guarantee the end-effector of the manipulator limited in the constrained task space. A learning method based on the radial basis function NN (RBFNN) is involved in controller design to compensate for the dynamic uncertainties and improve tracking performance. The IBLF method is provided to prevent violations of the constrained task space. We prove that all states of the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB) by utilizing the Lyapunov stability principles. At last, the effectiveness of the proposed algorithm is verified on a Baxter robot experiment platform. Note to Practitioners-This work is motivated by the neglect of safety in existing controller design in physical human-robot interaction (pHRI), which exists in industry and services, such as assembly and medical care. It is considerably required in the controller design for rigorously handling constraints. Therefore, in this article, we propose a novel admittance-based human-robot interaction controller. The developed controller has the following functionalities: 1) ensuring reference trajectory remaining in the constrained task space: A differentiable reference trajectory is shaped by the desired admittance model and a soft saturation function; 2) solving uncertainties of robotic dynamics: A learning approach based on radial basis function neural network (RBFNN) is involved in controller design; and 3) ensuring the end-effector of the manipulator remaining in the constrained task space: different from other barrier Lyapunov function (BLF), integral BLF (IBLF) is proposed to constrain system output directly rather than tracking error, which may be more convenient for controller designers. The controller can be potentially applied in many areas. First, it can be used in the rehabilitation robot to avoid injuring the patient by limiting the motion. Second, it can ensure the end-effector of the industrial manipulator in a prescribed task region. In some industrial tasks, dangerous or damageable tools are mounted on the end-effector, and it will hurt humans and bring damage to the robot when the end-effector is out of the prescribed task region. Third, it may bring a new idea to the designed controller for avoiding collisions in pHRI when collisions occur in the prescribed trajectory of end-effector

    Learning to Assist Different Wearers in Multitasks: Efficient and Individualized Human-In-the-Loop Adaption Framework for Exoskeleton Robots

    Full text link
    One of the typical purposes of using lower-limb exoskeleton robots is to provide assistance to the wearer by supporting their weight and augmenting their physical capabilities according to a given task and human motion intentions. The generalizability of robots across different wearers in multiple tasks is important to ensure that the robot can provide correct and effective assistance in actual implementation. However, most lower-limb exoskeleton robots exhibit only limited generalizability. Therefore, this paper proposes a human-in-the-loop learning and adaptation framework for exoskeleton robots to improve their performance in various tasks and for different wearers. To suit different wearers, an individualized walking trajectory is generated online using dynamic movement primitives and Bayes optimization. To accommodate various tasks, a task translator is constructed using a neural network to generalize a trajectory to more complex scenarios. These generalization techniques are integrated into a unified variable impedance model, which regulates the exoskeleton to provide assistance while ensuring safety. In addition, an anomaly detection network is developed to quantitatively evaluate the wearer's comfort, which is considered in the trajectory learning procedure and contributes to the relaxation of conflicts in impedance control. The proposed framework is easy to implement, because it requires proprioceptive sensors only to perform and deploy data-efficient learning schemes. This makes the exoskeleton practical for deployment in complex scenarios, accommodating different walking patterns, habits, tasks, and conflicts. Experiments and comparative studies on a lower-limb exoskeleton robot are performed to demonstrate the effectiveness of the proposed framework.Comment: 16 pages journal articl

    Adaptive Cooperative Control Strategy for a Wrist Exoskeleton using Model-based Joint Impedance Estimation

    Get PDF
    Wrist rehabilitation exoskeletons have gained much attention over the last decades, striving to restore motor functions for patients with neuromuscular disorders. Electromyography signal has been employed to estimate the motion intention to achieve interactive training schemes. However, it is a challenging task to estimate the joint impedance in real time, as it is a crucial parameter for control of exoskeletons. This article proposes an adaptive cooperative control strategy for a wrist exoskeleton based on a real-time joint impedance estimation approach. By explicitly interpreting the underlying transformation in the muscular and skeletal systems, the proposed approach estimates the motion intention and the joint impedance of a human subject simultaneously without additional calibration procedures and regulates the training trajectories and assistance accordingly. Results indicate the proposed method outperforms other training protocols, including the trajectory tracking control and the fixed cooperative control. The proposed control strategy provides an additional 66.25% motion deviation when estimated joint torque increases 12.36%, which enhances the training effectiveness and the interaction safety and promotes subjects' active engagement

    Bio-Cooperative Approach for the Human-in-the-Loop Control of an End-Effector Rehabilitation Robot

    Get PDF
    The design of patient-tailored rehabilitative protocols represents one of the crucial factors that influence motor recovery mechanisms, such as neuroplasticity. This approach, including the patient in the control loop and characterized by a control strategy adaptable to the user's requirements, is expected to significantly improve functional recovery in robot-aided rehabilitation. In this paper, a novel 3D bio-cooperative robotic platform is developed. A new arm-weight support system is included into an operational robotic platform for 3D upper limb robot-aided rehabilitation. The robotic platform is capable of adapting therapy characteristics to specific patient needs, thanks to biomechanical and physiological measurements, and thus closing the subject in the control loop. The level of arm-weight support and the level of the assistance provided by the end-effector robot are varied on the basis of muscular fatigue and biomechanical indicators. An assistance-as-needed approach is applied to provide the appropriate amount of assistance. The proposed platform has been experimentally validated on 10 healthy subjects; they performed 3D point-to-point tasks in two different conditions, i.e., with and without assistance-as-needed. The results have demonstrated the capability of the proposed system to properly adapt to real needs of the patients. Moreover, the provided assistance was shown to reduce the muscular fatigue without negatively influencing motion execution

    Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation

    No full text

    Patient, carer, and staff perceptions of robotics in motor rehabilitation: a systematic review and qualitative meta‑synthesis.

    Get PDF
    Background: In recent years, robotic rehabilitation devices have often been used for motor training. However, to date, no systematic reviews of qualitative studies exploring the end-user experiences of robotic devices in motor rehabilitation have been published. The aim of this study was to review end-users’ (patients, carers and healthcare professionals) experiences with robotic devices in motor rehabilitation, by conducting a systematic review and thematic meta-synthesis of qualitative studies concerning the users’ experiences with such robotic devices. Methods: Qualitative studies and mixed-methods studies with a qualitative element were eligible for inclusion. Nine electronic databases were searched from inception to August 2020, supplemented with internet searches and forward and backward citation tracking from the included studies and review articles. Data were synthesised thematically following the Thomas and Harden approach. The CASP Qualitative Checklist was used to assess the quality of the included studies of this review. Results: The search strategy identified a total of 13,556 citations and after removing duplicates and excluding citations based on title and abstract, and full text screening, 30 studies were included. All studies were considered of acceptable quality. We developed six analytical themes: logistic barriers; technological challenges; appeal and engagement; supportive interactions and relationships; benefits for physical, psychological, and social function(ing); and expanding and sustaining therapeutic options. Conclusions: Despite experiencing technological and logistic challenges, participants found robotic devices acceptable, useful and beneficial (physically, psychologically, and socially), as well as fun and interesting. Having supportive relationships with significant others and positive therapeutic relationships with healthcare staff were considered the foundation for successful rehabilitation and recovery
    corecore