163 research outputs found

    Joint Data compression and Computation offloading in Hierarchical Fog-Cloud Systems

    Get PDF
    Data compression has the potential to significantly improve the computation offloading performance in hierarchical fog-cloud systems. However, it remains unknown how to optimally determine the compression ratio jointly with the computation offloading decisions and the resource allocation. This joint optimization problem is studied in the current paper where we aim to minimize the maximum weighted energy and service delay cost (WEDC) of all users. First, we consider a scenario where data compression is performed only at the mobile users. We prove that the optimal offloading decisions have a threshold structure. Moreover, a novel three-step approach employing convexification techniques is developed to optimize the compression ratios and the resource allocation. Then, we address the more general design where data compression is performed at both the mobile users and the fog server. We propose three efficient algorithms to overcome the strong coupling between the offloading decisions and resource allocation. We show that the proposed optimal algorithm for data compression at only the mobile users can reduce the WEDC by a few hundred percent compared to computation offloading strategies that do not leverage data compression or use sub-optimal optimization approaches. Besides, the proposed algorithms for additional data compression at the fog server can further reduce the WEDC

    Latency Minimization for Multiuser Computation Offloading in Fog-Radio Access Networks

    Full text link
    This paper considers computation offloading in fog-radio access networks (F-RAN), where multiple user equipments (UEs) offload their computation tasks to the F-RAN through a number of fog nodes. Each UE can choose one of the fog nodes to offload its task, and each fog node may simultaneously serve multiple UEs. Depending on the computation burden at the fog nodes, the tasks may be computed by the fog nodes or further offloaded to the cloud via capacity-limited fronthaul links. To compute all UEs tasks as fast as possible, joint optimization of UE-Fog association, radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs. This min-max problem is formulated as a mixed integer nonlinear program (MINP). We first show that the MINP can be reformulated as a continuous optimization problem, and then employ the majorization minimization (MM) approach to finding a solution for it. The MM approach that we develop herein is unconventional in that---each MM subproblem is inexactly solved with the same provable convergence guarantee as the conventional exact MM. In addition, we also consider a cooperative offloading model, where the fog nodes compress-and-forward their received signals to the cloud. Under this model, a similar min-max latency optimization problem is formulated and tackled again by the inexact MM approach. Simulation results show that the proposed algorithms outperform some heuristic offloading strategies, and that the cooperative offloading is generally better than the non-cooperative one.Comment: 11 pages, 8 figure

    Edge and Central Cloud Computing: A Perfect Pairing for High Energy Efficiency and Low-latency

    Get PDF
    In this paper, we study the coexistence and synergy between edge and central cloud computing in a heterogeneous cellular network (HetNet), which contains a multi-antenna macro base station (MBS), multiple multi-antenna small base stations (SBSs) and multiple single-antenna user equipment (UEs). The SBSs are empowered by edge clouds offering limited computing services for UEs, whereas the MBS provides high-performance central cloud computing services to UEs via a restricted multiple-input multiple-output (MIMO) backhaul to their associated SBSs. With processing latency constraints at the central and edge networks, we aim to minimize the system energy consumption used for task offloading and computation. The problem is formulated by jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices, which is {a mixed-integer and non-convex optimization problem}. Based on methods such as decomposition approach and successive pseudoconvex approach, a tractable solution is proposed via an iterative algorithm. The simulation results show that our proposed solution can achieve great performance gain over conventional schemes using edge or central cloud alone. Also, with large-scale antennas at the MBS, the massive MIMO backhaul can significantly reduce the complexity of the proposed algorithm and obtain even better performance.Comment: Accepted in IEEE Transactions on Wireless Communication
    • …
    corecore