
Energy Minimization for D2D-Assisted Mobile
Edge Computing Networks

Yuan Kai∗, Junyuan Wang† and Huiling Zhu∗
∗School of Engineering and Digital Arts, University of Kent, United Kingdom

E-mail: {yk69, h.zhu}@kent.ac.uk
†Department of Computer Science, Edge Hill University, Ormskirk, United Kingdom

E-mail: junyuan.wang@edgehill.ac.uk

Abstract—This paper addresses the energy minimization prob-
lem in Device-to-Device (D2D) assisted Mobile Edge Computing
(MEC) networks under the latency constraint of each individual
task and the computing resource constraint of each computing
entity. The energy minimization problem is formed as a two-
stage optimization problem. Specifically, in the first stage, an
initial feasibility problem is formed to maximize the number
of executed tasks and the global energy minimization problem
is tackled in the second stage while maintaining the maximum
number of executed tasks. Both of the optimization problems in
two stages are NP-hard, therefore a low-complexity algorithm is
developed for the initial feasibility problem with a supplementary
algorithm further proposed for energy minimization. Simulation
results demonstrate the near-optimal performance of the pro-
posed algorithms and the fact that with the assistance of D2D
communication, the number of executed tasks is greatly increased
and the energy consumption per executed task is significantly
reduced in MEC networks, especially in dense user scenario.

Index Terms—Mobile edge computing, device-to-device com-
munication, energy minimization, task offloading.

I. INTRODUCTION

With the increasing popularity of user equipments (UEs)
such as smartphones and hand-held devices, more and more
resource-hungry applications like high definition video stream-
ing, real-time online gaming and virtual reality applications
are developing rapidly. However, vast computation-intensive
and latency-critical applications/tasks bring severe challenges
to the physical limitations of devices, such as CPU capability
and battery life.

In recent years, a new paradigm called Mobile Edge Com-
puting (MEC) is envisioned as a promising technology for
releasing the idle computation resource at the wireless network
edge infrastructures, i.e. base stations and access points (APs),
instead of centralized cloud centre [1]. Although the energy
and time consumption can be greatly reduced by eliminating
the transmission distance from edge infrastructures to cloud
centre, the energy and time consumption for the wireless
communication and task computing still remains, which needs
to be managed carefully.

With respect to the energy consumption and latency re-
quirement of each individual task generated by UEs, most of
the previous research focused on the resource management
of the infrastructure-based MEC networks, where the tasks
generated by UEs can be offloaded to the edge infrastructures,

by considering the disciplines of both wireless communica-
tions and mobile computing [2]–[5]. However, there exist two
limitations in such MEC networks: 1) Despite the relatively
high computing power at the edge infrastructures compared
to each device, it has to be shared by a large number of
tasks, hence reducing the gap in the computation latency; 2)
Since the UEs are spatially distributed in the cellular network,
the distance between UEs and infrastructures could be very
long, especially for the cell edge UEs, resulting unacceptable
task offloading latency. Hence, some of the latency-critical
tasks may not be able to accomplished. In other words, there
may exist non-negligible number of infeasible tasks in MEC
networks [5].

To remedy the limitations of MEC network, user-
cooperative computing have draw much attention recently [6]–
[8]. In [6], a self-coordinated protocol for user-cooperative
computing system was firstly proposed. [7] investigated the
adaptive offloading control at the UE side based on the
prediction of available computing power. An online distributed
fog network was proposed in [8] to minimize the maximum
computational latency. However, the user-oriented protocols
may result in low stability, reliability and efficiency. More-
over, there is no commitment for cooperation without central
control. Hence, based on game theory, [9] investigated the
price for the task execution to incentivizing the UEs for
collaboration.

In view of the above prior works, scattered computing
power in massive UEs can be utilized to fulfil the ever-
increasing computation demand from the aspect of mobile
computing. Also, one key fact that is overlooked is that
the offloading distance can be significantly reduced by user
cooperative computing. From the wireless communication
perspective [11]–[20], short transmit distance leads to high
data rate communication with low power consumption and
low delay, which can diminish the task offloading latency
and energy consumption. In addition, substantial multi-user
diversity gains can also be achieved with massive potential
cooperative UEs. Therefore, radio resource management for
user cooperative computing networks is vital to reduce the
number of infeasible tasks as well as minimize the total energy
consumption, which was unfortunately not addressed properly
in previous research works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227103593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

O0

UE4

UE1

UE3

UE2

UE6

UE5

Cellular task offloading D2D task offloading

U3

U4

U2

U1

U5

U6

Edge Cloud

Access Point

Fig. 1. D2D-Assisted Mobile Edge Computing Network.

As Device-to-Device (D2D) communication was proposed
to enable the direct communication between two nearby UEs
[11], [21], D2D-assisted MEC is considered in this paper
to allow the task offloading between UEs in addition to the
network infrastructures. Joint radio-and-computation resource
management for D2D-assisted MEC networks is investigated
in two stages. Specifically, in the first stage, a low-complexity
algorithm is developed to maximize the number of executed
tasks subject to the latency constraint of each individual task
and the computing resource constraint of each computing
entity, i.e. edge AP and UEs. A supplementary algorithm
is then proposed in the second stage to minimize the total
energy consumption while maintaining the maximum number
of executed tasks. Simulation results show that the number of
executed tasks and the corresponding energy consumption per
executed task with our proposed algorithms are very close
to those with the optimal exhaustive search. Furthermore,
it is revealed that the number of executed tasks in MEC
networks is significantly increased with the assistance of D2D
communication, while the energy consumption per executed
task is greatly reduced, especially in dense UE scenarios.

The remainder of this paper is organized as follows. Section
II describes the system model of D2D-assisted MEC network.
Section III presents the feasibility problem and proposes a low-
complexity task allocation algorithm. The energy minimization
problem is then studied with a supplementary algorithm de-
veloped in section IV. Simulation results and discussions are
given in Section V, followed by the conclusions in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider that there are N active
UEs, denoted by N = {1, 2, ..., N}, each of which has
one computation-intensive task to be executed. Let U =
{U1, · · · , Ui, · · ·UN} denotes the set of tasks to be executed
at one time, where task Ui is assumed to be generated at UE
i. For any task Ui ∈ U , let Fi, Di, Ti,max denote the total
number of the CPU cycles to be computed, the data size of
offloading package and the corresponding time constraint of
task Ui, respectively. Di and Fi can be obtained by using the
approaches provided in [22].

It is assumed that device-to-device (D2D) communication
is available between any two UEs in the cell. As a result,
each task can be offloaded either to the edge access point

(AP) located at the centre of the cell or to any other UE via
D2D communication. The set of possible computing entities,
including the edge AP and all the UEs that each task can be
allocated to, is defined as M = {0,N}, with |M| = M ,
where 0 is the index of the edge AP. ai,j , i ∈ N , j ∈ M is
defined as the task allocation indicator to show that whether
the task from the UE i is allocated to the computing entity j.
Thus, one has

ai,j ∈ {0, 1},∀i ∈ N ,∀j ∈M, (1)

where ai,j = 1 denotes that the UE i decides to allocate its
task Ui to the computing entity j and 0 otherwise. As each task
can only be executed at one computing entity or may not be
able to be completed anywhere due to lack of communication
or computation resources, it can be easily obtained that∑

j∈M
ai,j ≤ 1,∀i ∈ N . (2)

A. Energy Consumption for Task Execution

In this paper, it is considered that the computing resource of
computing entity j is denoted as fj , and multiple tasks can be
executed at one computing entity and its computing resource
is shared by the tasks allocated to it. That is,∑

i∈N
ai,j · fi,j ≤ fj ,∀j ∈M, (3)

where fi,j denotes the allocated computing resource for task
Ui at computing entity j.

The execution time of task Ui at computing entity j, TCi,j ,
is then obtained as

TCi,j =
Fi
fi,j

, ∀i ∈ N ,∀j ∈M, (4)

and the corresponding computation energy consumption, ECi,j ,
is give by [23]

ECi,j = TCi,j · pCi,j = κj(fi,j)
νj−1Fi, ∀i ∈ N ,∀j ∈M, (5)

where pCi,j = κj(fi,j)
νj is the execution power of task Ui

with allocated computing resource fi,j . κi > 0 is the effective
switched capacitance and νj ≥ 2 is the positive constant.

B. Energy Consumption for Task Offloading

Note that task Ui is not offloaded if ai,i = 1,∀i ∈ N , i.e.
UE i executes its own task. If UE i decides to offload its task
Ui to computing entity j where j ∈ M \ i, the task data Di

has to be transmitted to the destination computing entity j.
By assuming that the transmit power of each device is fixed
to pTr, the data rate, ri,j , can be obtained as

ri,j = B log2

(
1 +

pTr · |gi,j |2

σ2

)
, ∀i ∈ N ,∀j ∈M \ i,

(6)
where gi,j is the channel coefficient from UE i to computing
entity j, and |gi,j |2 = di,j

−α · |hi,j |2. Here, hi,j is small-scale
fading with hi,j ∼ CN (0, 1), di,j is the distance between UE
i and computing entity j and α is the path-loss exponent. σ2

denotes the additive white Gaussian noise power. Note that
dedicated spectrum with fixed bandwidth, B, is assumed to
be allocated to each UE for task offloading. The consumed
transmission time of task Ui to computing entity j is given by

TTri,j =

{
Di

ri,j
∀i ∈ N , j ∈M \ i;

0 ∀i ∈ N , i = j.
(7)

The transmission energy consumption of offloading task Ui
can be then obtained as

ETri,j = pTr · TTri,j , ∀i ∈ N , j ∈M. (8)

The data size of the computation results are considered to be
much smaller than the offloading data size, hence the time and
energy consumption of sending the results back are ignored in
this paper.

The energy consumption of each executing task consists
of computation energy and offloading energy. Thus, the total
energy consumption can be expressed as

Etot =
∑
i∈N

∑
j∈M

ai,j
(
ETri,j + ECi,j

)
. (9)

It is obvious that if all the tasks in U are dropped, i.e.∑
i∈N

∑
j∈M ai,j = 0, the minimum energy consumption

can be achieved, with Etot = 0, and the problem becomes
trivial. Moreover, due to the limited computing resource of
each entity, one latency-critical task may not be successfully
completed under the D2D-assisted MEC network. Therefore,
in this paper, we focus on the energy minimization problem
while achieving the maximum number of feasible tasks under
D2D-assisted MEC networks. For the sake of clarity, a two-
stage optimization problem is formulated, which contains
the initial feasibility problem and the energy minimization
problem.

III. INITIAL FEASIBILITY PROBLEM
A. Problem Formulation and Analysis

In the first stage, we aim to maximize the number of tasks
which can be successfully completed, either through offloading
to other UEs, the edge AP or executing themselves. The initial
feasibility optimization problem can be formulated as

P1 : max
{ai,j},{fi,j}

∑
i∈N

∑
j∈M

ai,j

Subject to : (1), (2), (3);∑
j∈M

ai,j
(
TCi,j + TTri,j

)
≤ Ti,max,∀i ∈ N ,

(10)

where (10) follows the constraint that each task Ui is delay-
sensitive and needs to be finished within Ti,max.

Since (2) indicates that each task can be assigned to one
computing entity at most, the time constraint of each task can
be replaced by the computing resource requirement of each
task at each computing entity, fi,j , by substituting (4) and (7)
into (10), which is

fi,j ≥ fmini,j =
Fi

Ti,max −Di/ri,j
, (11)

where fmini,j denotes the minimum computing resource require-
ment of task Ui at computing entity j.

It can be easily seen that the equality of (11) holds for the
optimal solution sets {a∗i,j} and {f∗i,j} of P1. Hence, a∗i,j and
f∗i,j must satisfy

f∗i,j = a∗i,j · fmini,j . (12)

Since it is not possible to allocate negative computing
resource, f∗i,j needs to be positive value. That is, a∗i,j = 0
when fmini,j ≤ 0. Therefore, by combining (3) and (12), P1
can be reformulated as

P2 : max
{ai,j}

∑
i∈N

∑
j∈M

ai,j

Subject to : (1), (2);∑
i∈N

fmini,j · ai,j ≤ fj ,∀j ∈M; (13)

ai,j = 0, if fmini,j ≤ 0,∀i ∈ N , j ∈M. (14)

The optimization problem P2 reduces to a multiple knap-
sack problem, when fmini,j is the same for task Ui at all the
computing entities. As the multiple knapsack problem is NP-
hard and P2 is at least as hard as the multiple knapsack
problem, there is no computational efficient approach to solve
P2 optimally. Therefore, a low-complexity task allocation
algorithm is developed in next subsection.

B. Algorithm Design

As it can be seen in (11), the offloading rate ri,j for task
Ui to computing entity j would lead to different minimum
computing resource requirement, fmini,j , and the offloading
rate ri,j is only related to the offloading channel between
computing entity i and j, gi,j . Since UEs are assumed to
be independent and identically distributed (i.i.d.) within the
cell and dedicated spectrum is allocated for each possible
offloading transmission, the offloading rates are independent
with each other. That is, fmini,j will not be affected by the task
allocation result. However, each computing entity has limited
amount of avaliable computing resource, fj , as shown in (13).
To illustrate the effect of (13) and (14), we therefore define
the auxiliary weight variable of task Ui at computing entity j
as ∆fi,j , shown as

∆fi,j =

fmin
i,j

f ′j
if fmini,j > 0;

∞ otherwise,
(15)

where f ′j denotes the current avaliable computing resource at
entity j.

Based on the defined auxiliary variable ∆fi,j , an initial
task allocation (ITA) algorithm is proposed to solve P2. The
main idea is to allocate N tasks through N iterations, as
each task can only be allocated to one computing entity.
During iteration k, task Ui∗ is allocated to computing entity j∗

and ai∗,j∗ = 1, where (i∗, j∗) = arg min[∆fi,j](N−k+1)×M
and [∆fi,j](N−k+1)×M denotes the auxiliary weight variable
matrix for the remaining N − k + 1 tasks at M computing

Algorithm 1 Initial Task Allocation (ITA) algorithm
Initialization: Set the task indicator k=1, the task allocation
indicator matrix [ai,j]N×M = 0, calculate [fmini,j]N×M

according to (11), [∆fi,j]
(0)
N×M according to (15).

if k < N and min[∆fi,j]
(k)
(N−k)×M < 1 then

Based on [∆fi,j]
(k−1)
(N−k+1)×M , calculate U (k−1)

q .

if U (k−1)
q 6= ∅ then

update [∆fq,j]
(k)
|Uq|×M ,then search for (q∗, j∗) =

arg min[∆fq,j]
(k)
|Uq|×M and set aq∗,j∗ ← 1

else
according to [∆fi,j]

(k−1)
(N−k+1)×M , search for (i∗, j∗) =

arg min[∆fi,j]
(k−1)
(N−k+1)×M and update [a∗i,j]N×M .

end if
Update [∆fi,j]

(k)
(N−k)×M according to (15) and (16).

else
Output [a

(p1)
i,j]N×M = [a∗i,j]N×M .

end if

entities. After iteration k, {∆fi,j∗ : ∀i ∈ N \ i∗} needs to be
updated according to (15), where

f ′j∗ = fj∗ −
∑
i∈N

fmini,j∗ · ai,j∗ . (16)

Note that during the task allocation process, there might
exist some special tasks, each of which has only one feasible
entity, so called exclusive tasks. Specifically, as the mobile
UEs are randomly distributed in the system, the number of
available computing entity for each task is different due to its
location and the individual time constraint (10). An exclusive
task can only be processed at one idle entity, which fulfils its
time constraint. Therefore, to maximize the number of feasible
tasks, we propose to give priority to the exclusive task set,
denoted by Uq ⊆ U . That is, if Uq 6= ∅ at the beginning of
iteration k, then one of the exclusive tasks Uq∗ needs to be
allocated to entity j∗ at iteration k and aq∗,j∗ = 1, where
(q∗, j∗) = arg min[∆fq,j]|Uq|×M .

It can be easily seen that after N iterations at most,
the ITA algorithm converges, and the task allocation matrix
[a

(p1)
i,j]N×M can be obtained and the ITA algorithm is summa-

rized in Algorithm 1.

IV. ENERGY MINIMIZATION PROBLEM

In this section, we focus on investigating the energy min-
imization problem while maintaining the maximum number
of feasible tasks achieved by solving the initial feasibility
problem.

A. Problem Formulation

As discussed in section III, the minimum computing re-
source requirement of task Ui at computing entity j, fmini,j ,
can be obtained from (11) based on its individual time con-
straint. Note that the offloading energy consumption, ETri,j , is
determined by the task allocation, and the computation energy

Algorithm 2 Iterative Switching Task (IST) algorithm
1: Initialization: Outer iteration number ot = 1. Set the task

allocation indicator matrix [a
(1)
i,j]N×M = [a

(p1)
i,j]N×M and

calculate [fmini,j]N×M according to (11).
2: repeat
3: Set task iterative number k = 1, number of switching

operations Ns = 0, and the maximum number of
iterations as

∣∣∣U (p1)
F

∣∣∣.
4: repeat
5: Calculate the residual computing resource for each

entity j ∈ M, {fRej }(k−1). For Uk ∈ U (p1)
F , obtain

jk, where a(ot)k,jk
= 1.

6: if fmink,jk
6= min fmink,j then

7: do switching operation, Ns ← Ns + 1 and update
[a

(ot)
i,j]N×M .

8: end if
9: k ← k + 1 ;

10: until k =
∣∣∣U (p1)
F

∣∣∣
11: ot← ot+ 1;
12: until Ns 6= 0
13: Output [a

(p3)
i,j]N×M = [a

(ot)
i,j]N×M

consumption ECi,j is proportional to the allocated computing
resource fi,j . Thus, by substituting (11) into (9), a lower bound
of the total energy consumption can be expressed as

Etot ≥ Ẽtot =
∑
i∈N

∑
j∈M

ai,j

(
pTr ·Di

ri,j
+ κjFi(f

min
i,j)νj−1

)
,

(17)

and the energy minimization problem can be therefore shown
as

P3 : min
{ai,j}

Ẽtot

subject to : (1), (2), (13), (14);∑
i∈N

∑
j∈M

ai,j = |UF | , (18)

where UF denotes the largest feasible task set obtained by the
ITA algorithm and |·| denotes the cardinality of a set.

In general, with any given feasible task set UF , (2) and (18)
can be integrated into one constraint, shown as∑

j∈M
ai,j = 1, ∀i ∈ UF , (19)

and P3 with given feasible task set UF , can be seen as a typical
general assignment problem, which is NP-hard. To solve P3,
a low-complexity energy minimization algorithm is developed
in the following subsection.

B. Algorithm Design

Based on the feasible task allocation matrix, [a
(p1)
i,j]N×M ,

obtained via ITA algorithm, the largest feasible task set is
defined as U (p1)

F = {Uf :
∑
j∈M a

(p1)
f,j = 1,∀Uf ∈ U}. For

1 2 3 4 5 6 7 8 9 1011121314151617181920

Number of tasks

72

74

76

78

80

82

84

86

88

90

E
x
e
c
u
te

d
 t

a
s
k

ra
ti
o
 (

%
)

D2D-MEC, Exhaustive search

D2D-MEC, ITA algorithm

MEC, Exhaustive search

Fig. 2. Executed task ratio versus the number of tasks in traditional
MEC networks and D2D-assisted MEC (D2D-MEC) networks with various
admission algorithms.

each task Uf , it can be seen from (11) that with known data
rate between entity f and entity j, rf,j , fminf,j is a deterministic
parameter, which monotonically decreases as rf,j increases.

Moreover, (5) shows that ECi,j is a monotonically increasing
function of fmini,j , as (νj−1) is always larger than 1. Therefore,
it can be easily observed that for one feasible task Uf , the
energy consumption at the feasible entity j, Ef = ETrf,j+ECf,j ,
increases with fminf,j . That is, according to (17), Ẽtot becomes
larger when the entity j with a larger fminf,j is chosen. Note
that Ef is feasible only when fmini,j > 0, as shown in (14).

Based on the above analysis, an iterative switching task
(IST) algorithm is then proposed to minimize the energy
consumption of the largest feasible task set U (p1)

F . Specifically,
the switching operation is the switching of each task Ui from
entity j, with a(p1)i,j = 1, to entity j′. There are two necessary
conditions need to be satisfied to form a possible switching
pair (j, j′) for task Ui: (1) fmini,j′ < fmini,j ; and (2) entity j′

must have enough computing resource left to fulfil fmini,j′ . That
is,

fRej′ = fj′ −
∑

Ul∈U(p1)
F

al,j′ · fminl,j′ ≥ fmini,j′ , (20)

where fRej′ denotes the residual computing resource at the
computing entity j′,∀j′ ∈M.

For each task Uf ∈ U (p1)
F , if there exists multiple entities to

pair with entity j, denoted by {j′o : o = 1, · · · , O}, that satisfy
the condition of switching operation, task Uf is assigned to
entity j∗ with the minimum fminf,j′o

, i.e., j∗ = arg min fminf,j′o
.

After
∣∣∣U (p1)
F

∣∣∣ iterations, the task allocation matrix
[ai,j]N×M can be obtained. However, since only one task
is checked for the switching operation at one iteration, if
switching operation for task Uk is done at iteration k, the
previous k−1 tasks might also have available switching pairs
since the residual computing resource for the two switched
entities is changed. Therefore, an outer iteration is needed if
switching operation is performed during the

∣∣∣U (p1)
F

∣∣∣ iterations.
The IST algorithm is summarized in Algorithm 2.

1 2 4 6 8 10 12 14 16 18 20

Number of tasks

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

ta
s
k
 (

)

ITA

ITA+IST

Exhaustive Search

Fig. 3. Energy consumption per executed task versus the number of tasks in
D2D-assisted MEC networks.

V. SIMULATION RESULTS

In this section, simulation results are presented to show
the benefits of D2D-assisted MEC networks and evaluate the
performance of the proposed algorithms. It is assumed that
N UEs are uniformly distributed in the cell with radius 100
meters and the edge AP is located at the centre of the cell. The
edge cloud AP is assumed to have f0 = 20GHz computing
capability. Each user i has random computing capability fi
varying from 0GHz to 10GHz, for all i ∈ {1, · · · , N} and
the transmit power is fixed at 10−3 watt. Each user randomly
generates one task with Di = 1, and Ti,max = 1,∀i ∈ N .
The required CPU cycles Fi is randomly distributed between
0GHz to 10GHz. Rayleigh small scale fading is assumed with
zero mean and unit variance.

A. Maximum Executed Task Ratio δ

Fig. 2 presents the executed task ratio, defined as δ = |UF |
N ,

in traditional MEC networks and D2D-assisted MEC net-
works. The optimal maximum executed task ratio of both MEC
and D2D-assisted MEC networks are obtained by using the ex-
haustive search method. Specifically, each task can be executed
by its own UE or the edge AP for traditional MEC networks,
otherwise the task cannot be accomplished. By exhaustively
searching through δ of all the possible 3N combinations for
N tasks, the maximum executed task ratio of traditional MEC
networks is obtained. Similarly, the maximum task executed
ratio of the D2D-assisted MEC networks is obtained by
exhaustively searching through δ of all the possible NN+2

combinations as each task have (N + 2) allocation options.
As the exhaustive search method has computation complexity
of O(NN+2) for D2D-assisted MEC networks and O(3N)
for MEC networks, the simulation results are obtained up to
N = 9 for MEC networks and up to N = 6 for D2D-assisted
MEC networks. It is shown in Fig. 2 that ITA algorithm can
achieve nearly the same executed task ratio as the optimal
exhaustive search. It is clearly shown that with the assistance
of D2D communication, the executed ratio converges gently to
81% when N = 20. By contrast, the executed task ratio rapidly
drops to 74% in traditional MEC network when N = 9.

It can be foreseen that in dense user scenario, although
the computing resource of AP is much more than that of an

individual UE, it cannot fulfil the large quantity of offloading
requests. By contrast, in D2D-assisted MEC network, the
executed task ratio is much higher than that in the traditional
MEC network. In fact, it is almost converges to more than 80%
in dense user scenario, indicating that the user experience can
be improved significantly.

B. Energy Consumption per Executed Task

Fig. 3 presents the energy consumption per executed task
as a function of the number of tasks in D2D-assisted MEC
networks. In general, it can be seen that the simulation results
of ITA+IST decreases dramatically from 0.318 J at N = 2 to
0.203 J at N = 20. It indicates that the energy consumption
per executed task reduces significantly in D2D-assisted MEC
networks as the number of UEs increases. The increment of
energy consumption from N = 1 to N = 2 is due to the fact
that more power is desired in D2D-assisted MEC networks as
more tasks are executed. However, this effect will be mitigated
as the number of UEs increases. The optimal energy consump-
tion results are obtained via exhaustive search from N = 1 to
N = 6. It is shown that with the supplementary IST algorithm
adopted after ITA algorithm, the energy consumption is greatly
reduced and close to the optimal results when the number of
tasks is small. Fig. 3 further shows that the performance of
ITA algorithm converges to ITA+IST algorithms in dense user
scenario. This is because when the number of tasks increases,
almost full system computing resource is utilized, leading to
little margin for further energy optimization.

VI. CONCLUSIONS

In this paper, the task feasibility problem and the energy
minimization problem in D2D-assisted MEC network are
investigated. Specifically, a low-complexity ITA algorithm
is developed to maximize the number of executed tasks
with the latency constraint of each individual task and the
computing resource constraint of each computing entity. A
supplementary IST algorithm is then proposed for global
energy minimization. Simulation results show that combining
ITA and IST algorithms can achieve close performance to
the optimal exhaustive search method. Moreover, it is further
shown that the D2D-assisted MEC network achieves higher
executed task ratio than the traditional MEC network, and the
energy consumption for executing each task is significantly
reduced, especially in dense user scenarios.

ACKNOWLEDGMENT

Junyuan Wang would like to acknowledge the support of
Edge Hill RIF Conference Travel Grant Award.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tutorials, vol. PP, no. 99, pp. 1–1, 2017.

[2] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sept.
2013.

[3] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, March 2017.

[4] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sept 2017.

[5] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, June
2015.

[6] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in
Proc. IEEE CLOUD, June 2015, pp. 9–16.

[7] C. You and K. Huang, “Mobile cooperative computing: Energy-efficient
peer-to-peer computation offloading,” CoRR, vol. abs/1704.04595, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04595

[8] G. Lee, W. Saad, and M. Bennis, “An online optimization
framework for distributed fog network formation with minimal
latency,” CoRR, vol. abs/1710.05239, 2017. [Online]. Available:
http://arxiv.org/abs/1710.05239

[9] X. Wang, X. Chen, W. Wu, N. An, and L. Wang, “Cooperative
application execution in mobile cloud computing: A stackelberg game
approach,” IEEE Communications Letters, vol. 20, no. 5, pp. 946–949,
May 2016.

[10] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887–3901, Dec 2016.

[11] Y. Kai, J. Wang, H. Zhu, and J. Wang, “Resource allocation and
performance analysis of cellular-assisted ofdma device-to-device com-
munications,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 416–
431, Jan 2019.

[12] J. Wang, H. Zhu, N. J. Gomes, and J. Wang, “Frequency reuse of beam
allocation for multiuser massive mimo systems,” IEEE Trans. Wireless
Commun., vol. 17, no. 4, pp. 2346–2359, April 2018.

[13] J. Wang, H. Zhu, L. Dai, N. J. Gomes, and J. Wang, “Low-complexity
beam allocation for switched-beam based multiuser massive mimo
systems,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8236–
8248, Dec 2016.

[14] H. Zhu, “Performance comparison between distributed antenna and
microcellular systems,” IEEE J. Sel. Areas Commun., vol. 29, no. 6,
pp. 1151–1163, June 2011.

[15] J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems
for mobile communications in high speed trains,” IEEE J. Sel. Areas
Commun., vol. 30, no. 4, pp. 675–683, May 2012.

[16] H. Zhu and J. Wang, “Radio resource allocation in multiuser distributed
antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 10, pp.
2058–2066, October 2013.

[17] H. Zhu and J. Wang, “Performance analysis of chunk-based resource
allocation in multi-cell ofdma systems,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 2, pp. 367–375, February 2014.

[18] H. Zhu, “Radio resource allocation for ofdma systems in high speed
environments,” IEEE J. Sel. Areas Commun., vol. 30, no. 4, pp. 748–
759, May 2012.

[19] H. Zhu and J. Wang, “Chunk-based resource allocation in ofdma
systemspart ii: Joint chunk, power and bit allocation,” IEEE Transactions
on Communications, vol. 60, no. 2, pp. 499–509, February 2012.

[20] ——, “Chunk-based resource allocation in ofdma systems - part i: chunk
allocation,” IEEE Transactions on Communications, vol. 57, no. 9, pp.
2734–2744, Sep. 2009.

[21] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Mikls,
and Z. Turnyi, “Design aspects of network assisted device-to-device
communications,” IEEE Communications Magazine, vol. 50, no. 3, pp.
170–177, March 2012.

[22] L. Yang, J. Cao, S. Tang, T. Li, and A. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in Proc. IEEE CLOUD, June 2012, pp. 794–802.

[23] K. Wang, K. Yang, and C. Magurawalage, “Joint energy minimization
and resource allocation in C-RAN with mobile cloud,” IEEE Trans.
Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

