Edge and Central Cloud Computing: A Perfect
Pairing for High Energy Efficiency and Low-latency

Xiaoyan Hu, Student Member, IEEE, Lifeng Wang, Member, IEEE, Kai-Kit Wong, Fellow, IEEE,
Meixia Tao, Fellow, IEEE, Yangyang Zhang, and Zhongbin Zheng

Abstract—In this paper, we study the coexistence and synergy
between edge and central cloud computing in a heterogeneous
cellular network (HetNet), which contains a multi-antenna macro
base station (MBS), multiple multi-antenna small base stations
(SBSs) and multiple single-antenna user equipment (UEs). The
SBSs empowered by edge cloud offer limited computing services
for UEs, whereas the MBS provides high-performance central
cloud computing services to UEs via restricted multiple-input
multiple-output (MIMO) backhaul to their associated SBSs. With
processing latency constraints at the central and edge networks,
we aim to minimize the system energy consumption used for task
offloading and computation. The problem is formulated by jointly
optimizing the cloud selection, the UEs’ transmit powers, the
SBSs’ receive beamformers, and the SBSs’ transmit covariance
matrices, which is non-convex with integer puzzle. Based on
the optimization methods such as decomposition approach and
successive pseudoconvex approach, a tractable solution is ob-
tained via a proposed iterative algorithm. The simulation results
show that our proposed solution can achieve great performance
gain over conventional schemes using edge or central cloud
alone. With large-scale antennas at the MBS, the massive MIMO
backhaul can significantly reduce the complexity of the proposed
algorithm and obtain even better performance.

Index Terms—Edge computing, central cloud computing, Het-
Nets, backhaul, massive MIMO.

I. INTRODUCTION
A. Motivations

The traditional cloud computing indicates the central cloud
computing (CCC), which moves data processing and storage
from user equipment (UEs) to powerful computing platforms
at central clouds. Mobile cloud computing (MCC) integrates
CCC into the mobile environment, which facilities mobile
users to take full advantages of the central cloud [1,2]. Even
though CCC/MCC can provide high-performance computing
services for UEs, it has one inherent disadvantage, i.e., the
central cloud usually locates far away form the UEs. Hence,
accessing the CCC/MCC services induces excessive transmis-
sion latency, which aggravates the backhaul congestion. It
is easy to encounter the performance bottleneck considering
the finite backhaul capacity and exponentially growing mobile
data, which inspired the emergence of edge (cloud) computing.

X. Hu, L. Wang and K.-K. Wong are with the Department of Electronic
and Electrical Engineering, University College London, London WCIE 7JE,
UK (Email: {xiaoyan.hu.16, lifeng.wang, kai-kit.wong} @ucl.ac.uk).

M. Tao is with the Department of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (Email: mxtao@sjtu.edu.cn).

Y. Zhang is with the Kuang-Chi Institute of Advanced Technology, Shen-
zhen 518057, China (Email: yangyang.zhang @kuang-chi.org).

Z. Zheng is with the East China Institute of Telecommunications, China
Academy of Information and Communications Technology, Shanghai 200001,
China (Email: ben@ecit.org.cn).

Edge (cloud) computing has recently be regarded as one
of the key enablers to shape the future intelligent wireless
networks. The rationale behind edge computing is that cloud
computing can be carried out at the edge of wireless networks,
so as to facilitate computation offloading of UEs and prolong
their battery lifetime [3,4]. The standardization bodies and
industry associations such as ETSI and SGAA have identified
various edge computing use cases for 5G cellular networks,
such as vehicle-to-everything (V2X) and massive machine-
type communications (mMTC), etc., [5,6]. For practical de-
ployment, several edge computing architectures have already
been proposed, such as mobile edge computing (MEC) [7],
fog computing [8, 9], and also cloudlets [10].

Edge computing is of great benefit to resource-limited UEs,
e.g., the Internet-of-Things (IoT) devices, which avoids the
frequent delivery of massive computing tasks to the core
networks with central cloud for computing, and thus reduces
the transmission latency and backhaul congestion [11,12].
However, the computing capabilities at the edge servers/clouds
are also limited in general due to the cost and their constrained
size. For UEs with highly computation-intensive tasks, the
edge computing servers/clouds may be incapable to provide
them with satisfactory computing services. Under this situa-
tion, the CCC/MCC has turned out to be a proper solution.
Hence, in order to improve the quality of service (QoS) for
dealing with a wide range of UEs’ computation tasks, applying
the architecture with the coexistence and cooperation between
the edge and central clouds could be a promising option.

B. Related Works

Extensive works focused on CCC/MCC have been conduct-
ed to explore the potentials of central cloud. Several system
architectures with various code offloading frameworks have
been studied, e.g., MAUI [13] and ThinkAir [14]. In [15], the
dynamic resource allocation using virtualization technology is
studied to achieve overload avoidance and green computing by
minimizing the number of physical machines. A computation
offloading algorithm is proposed in [16] to deal with multiple
services in workflow by leveraging the technology of MCC.

Recently, considerable attention has been paid to the design
and analysis of edge computing in cellular networks, e.g., [17—
21]. The tradeoff between energy consumption and latency
in information transmission and computation is analyzed in
[17], where an UE offloads its application tasks to a small
BS (SBS) for processing. In [18], a multi-user computation
offloading problem is considered in a single-cell scenario and



game-theoretical solutions are proposed in order to maximize
the cell load and minimize the cost in terms of computational
time and energy simultaneously. Later in [19], time and
frequency allocation problems for improving energy efficiency
are studied by considering multi-user computation offloading
in a single cell equipped with limited cloud capacity, where an
offloading priority function is derived to accommodate users’
priorities. The work of [20] examines a single-cloudlet sce-
nario where multiple UEs are served with equal-time sharing,
and a successive convex optimization approach is developed to
minimize the network energy consumption under a computing
latency constraint. Recent works related to edge computing
also focus on multi-service scenarios. For example, [21] con-
siders a single MEC server with storage capability and aims
to maximize the revenue of providing both the computing and
caching services. Besides, the effects of implementing the edge
computing in energy harvesting networks have been verified
in [22-26], which can further improve the performance of
edge computing by renewable energy harvesting or prolong
the devices’ lifetime through wireless energy harvesting.

The complementarity between edge and central cloud has
driven the researches on the coexistence and cooperation be-
tween edge and central clouds [27]. A delay-aware scheduling
between local and Internet clouds is studied in [28], and a
priority-based cooperation policy is given to maximize the
total successful offloading probability. The placement and
provisioning of virtualized network functions is explored in
[29], where an QoS-aware optimization strategies is proposed
over an edge-central carrier cloud infrastructure. In [30], an
edge server and a central cloud coexists to complete the UEs’
computations cooperatively, where a wired connection is used
between the edge server and the central cloud.

C. Our Contributions

Most of the existing computing works either focus on the
edge or central cloud computing only, and the edge computing
works mainly concentrate on the small-scale networks such
as the single MEC server or cloudlet case [12, 18-21,23-26].
Even though edge computing has been regarded as a promising
trend to deal with the ever growing mobile computing data,
it cannot entirely replace the present central cloud computing,
due to the fact that edge computing is set to push limited
processing and storage capabilities close to UEs but may be
incapable of dealing with big data processing. The latest white
paper from ETSI has further illustrated that central cloud
computing and edge computing are highly complementary
and significant benefits can be attained when utilizing them
both [5]. However, the architecture with the coexistence and
cooperation of edge and central cloud has not been thoroughly
studied, especially from the communication perspective [4].
Therefore, this paper studies the deployment of heterogeneous
edge and central clouds to leverage the easy access at the edge
clouds and the abundant computing resources at the central
cloud, mainly from the view of communication by considering
the cloud selection and resource allocation [4]. To our best
knowledge, this is the first work addressing the integrated
edge and central cloud computing in heterogeneous cellular
networks (HetNets) while considering the wireless backhaul.

Our main contributions are summarized as follows:

o Hybrid Edge/Central Cloud Computing Architecture:

We consider a hybrid edge and central cloud computing
architecture in a two-tier HetNet, including one macro
cell with a macro BS (MBS) and multiple small cells
each with a SBS. The edge clouds with limited computing
capabilities are co-located at or linked to the SBSs by op-
tical fiber while the central cloud with ultra-high comput-
ing capability is connected with the MBS through optical
fiber. The UEs can offload their computing tasks directly
to the SBSs to access the edge cloud computing services
(edge computing mode) or further offload to the MB-
S through the restricted multiple-input multiple-output
(MIMO)/massive MIMO backhaul to enjoy the central
cloud computing services (central computing mode). The
cooperation of edge and central cloud can help to improve
the quality of services (QoS) and ensure the scalability
and load balancing between the edge and central clouds.
Problem Formulation with Joint Optimization on the
Cloud Selection, Access Transmit Powers, Receive
Beamforming Vectors and Backhaul Transmit Covari-
ance Matrices: Our aim is to minimize the network’s
energy consumption for task offloading and computation
under both the central and edge processing latency con-
straints through jointly optimizing the cloud selection, the
UEs’ transmit powers, the SBSs’ receive beamforming
vectors, and the SBSs’ transmit covariance matrices.
The central processing latency constraint requires the
backhual transmission latency in the central computing
mode being much lower than the computing latency at
the edge cloud when choosing the edge computing mode,
so as to restrict the use of central cloud for avoiding
the abuse of the backhaul. The edge processing latency
constraint requires the corresponding latency not exceed-
ing a targeted threshold to guarantee the quality of ser-
vices provided by edge cloud. A mixed-integer and non-
convex optimization problem is formulated accordingly,
which is a NP-hard in general. For the case of massive
MIMO backhaul, we consider two low-complexity linear
processing methods, namely maximal-ratio combining
(MRC) and zero-forcing (ZF), and the corresponding
optimization problems can be much simplified.
Algorithm Design: An iterative algorithm is developed
to solve the combinatorial mixed-integer and non-convex
optimization problem corresponds to the case with tra-
ditional MIMO backhaul. In particular, we show that in
each iteration, the UEs’ transmit powers and the SBSs’
receive beamforming vectors can be optimized in closed-
form, and the SBSs’ transmit covariance matrix solution
is obtained by leveraging a successive pseudoconvex
optimization approach. In addition, the massive MIMO
backhaul solutions can be easily obtained thanks to the
unique features of massive MIMO transmission, which
significantly reduce the complexity of the algorithm.
Design Insights: Simulation results are presented to
demonstrate the efficiency of the proposed algorithm and
shed light on the effects of key parameters such as the



Central Cloud

Fig. 1. An illustration of two-tier HetNets equipped with edge clouds
associated with the SBSs and central cloud connected by the MBS via
optical fiber, where the MBS provides central cloud computing services for
UEs through restricted MIMO/massive MIMO backhaul for addressing more
complicated computing tasks which cannot be handled by the SBSs’ edge
cloud due to the limited computing capability.

offloaded task size, edge processing latency threshold,
and edge cloud’s CPU frequency. It is confirmed that
the solution of the integrated edge and central cloud
computing scheme proposed in this work can achieve
better performance than the schemes with edge (cloud)
computing alone or central cloud computing alone, and
outperforms all the other benchmark solutions. In addi-
tion, low-complexity massive MIMO solution with ZF
receiver could always outperform the solution with tra-
ditional MIMO backhaul, while the solution with MRC
receiver could achieve similar or better performance than
the traditional MIMO one in certain scenarios.

The rest of this paper is organized as follows. In Section II,
the considered system model is described and the corre-
sponding optimization problem is formulated. The proposed
algorithm under traditional MIMO backhaul is presented in
Section III, and massive MIMO backhaul solution is given in
Section IV. Section V provides the simulation results. Finally,
we have some concluding remarks in Section VL.

Notations—In this paper, the upper and lower case bold
symbols denote matrices and vectors, respectively. The no-
tations ()7 and () are conjugate transpose and conjugate
operators for vectors or matrices, respectively. [x]+ is used as
max {z,0}. In addition, det (A) denotes the determinant of
A, and tr {A} is the trace of A. Also, eig {A} denotes the set
of all the eigenvalues for A, and eigvec {-} gives the eigenvec-
tor for a given eigenvalue of A. (A, Ay) 2 R{tr(ATA,)},
where 9R{-} is the real-value operator, and V4 f(A) denotes
the Jacobian matrix of f(A) with respect to (w.r.t.) A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a two-tier HetNet, where
an M-antenna MBS provides wireless MIMO backhaul and
is fiber-optic connected to the central cloud with super com-
puting capability, and N SBSs with edge clouds can provide

limited computing capabilities.! In each small cell, a SBS
equipped with L antennas serves a single-antenna UE?, and
let N = {1,..., N} denote the set of the SBSs as well as
the UEs. Each UE n € A has an atomic highly integrated
computation-intensive task, characterized by a positive tuple
[I),, Oy, K], which cannot be partitioned for parallel execu-
tion. Here [,, is the size (in bits) of the computation task-
input data (e.g., the program codes and the input parameters)
which cannot be divided and has to be offloaded as a whole
for computation, O,, denotes the size of the task-output data
corresponding to the results of the I,, input data, and K, is the
amount of required computing resource for computing 1-bit of
the input data (i.e., the number of CPU cycles required).? Let
B and B denote the bandwidths allocated to UEs’ access
links to their serving SBSs and SBSs’ backhaul links to the
MBS, respectively. A coordination and monitoring protocol
between SBSs and MBS is need as the one used in [35, 36].

Assuming that the UEs are endowed with very limited
computing resources, they tend to choose computation offload-
ing to complete their computation tasks remotely, so as to
save their own energy and resources. Since the computing
tasks offloaded by the UEs could be executed either at the
edge cloud or central cloud, the cloud selection needs to be
appropriately determined before evaluating the computation
latency and energy consumption. Let the binary indicator ¢,
denote the computing decision, where ¢, = 1 indicates edge
computing, and ¢, = 0 indicates central cloud computing
being selected for each UE n € N. In the sequel, we will
study the latency and energy consumption of the network,
and then formulate the optimization problem for minimizing
the network’s total energy consumption under the central and
edge processing latency constraints.

A. Transmission and Computing Latency

1) Access Transmission Latency: The uplink transmission
rate of UE n for offloading the I,,-bit computing tasks to its
serving SBS is expressed as

R(p",w,) = B*logy (1 +72(p",wy)), neN (1)
with the signal-to-interference-plus-noise ratio (SINR)
palw; by |2

N )
Zi:l,i;ﬁn piwihg |2 + [wiin,|?

(P Wn) = 2

where w,, is the receive beamforming vector of the n-th SBS,
h?, € CL>1 is the access channel vector between UE i and

IThe central cloud can be regarded as the computing part of the cloud radio
access network (Cloud RAN) [31]. The edge cloud can be an independent
edge computing server co-located at the corresponding SBS or a certain part
of computing capability allocated to the SBS from a fiber-optic connected
edge computing center [4].

2The case of serving multiple UEs in each small cell can be effectively
dealt with by using the existing orthogonal multiple access techniques such
as time-division-multiple-access (TDMA).

3The parameters in the task tuple of [I,,, On, Ky] can be obtained through
task profilers by applying the methods (e.g., call graph analysis) [4, 13, 32—
34]. It is assumed that the size of computing outputs, i.e., Oy (usually a
few command bits) is much smaller than I,, (usually measured by Mbit) in
practice, and thus the downlink overhead such as time and energy consumption
for delivering the output data back to the UEs is negligible and can be ignored.



SBS n, n,, is a vector of the additive white Gaussian noise with
zero mean and variance 02, and p" 2y, ... ,p‘j\,}T e RVx1
denotes the transmit power vector of the UEs. Therefore, the
uplink access transmission latency for UE n’s task offloading
can be calculated as

L,
Ra(pv, wy)’

2) Edge Computing Latency (¢, = 1): Let f,, denote the
CPU clock frequency of the n-th edge cloud associated with
SBS n, and thus the corresponding edge computation latency
for dealing with the I, -bits input data can be described as

reise = Infon ¢y, (4)
fn
which indicates that the value of edge computing latency
heavily depends on the offloaded task size, the unit computing
resource required and edge cloud’s CPU clock frequency.

3) Central Cloud Processing Latency/Backhaul Transmis-
sion Latency (c, = 0): The central cloud processing latency
results from backhaul transmission and task execution at the
central cloud. Due to the central cloud’s super computing capa-
bility, its computing time is much lower than edge computing,
thus we assume that the time for central cloud computing is
negligible. Hence, the central cloud processing latency, i.e.,
the backhaul transmission latency for the n-th UE can be
calculated as

T2 (p",wy) = nenN. 3)

central _ ]TL

where RP(Q) is the backhaul transmission rate given by
R3(Q) = B"log, det (T+ W(Q-,) 'H;Q. (H2)") . ©)

with the noise-plus-interference covariance matrix ¥(Q_,,) =
o’T+ YN, L, HYQ; (HY)". In (6), Q, is the transmit
covariance matrix of SBS n, Q = {Q,}Y_; and Q_,, =
{Ql}fi 1,in are respectively the compact transmit covariance
matrices and the compact transmit covariance matrices except
Q... and H? € CM*Z is the backhaul channel matrix from
SBS n to the MBS. Note that if the task of UE n € A is
executed by the edge cloud of SBS n, i.e. ¢, = 1, the transmit
covariance matrix at SBS n shall be Q,, = 0.

, neN, 3)

B. Energy Consumption

Energy consumption results from task offloading energy and
task execution/computation energy. Based on Section II-A, the
amount of energy consumption for UE n € N to offload its
computing tasks to its serving SBS can be calculated as

E2 =piT2(p",wy,), neN. (7

If the UE n’s task is executed by the edge cloud associated
with the SBS, the computation energy consumption at the
corresponding edge server is given by

ELlee = o, I, K, f2, ne N, (8)

where o, is the effective switched capacitance of the edge
cloud n. Else, if the task is executed by the central cloud,

we then have the central processing energy consumption, in-
cluding the backhaul transmission and the computation energy
consumption, which is expressed as follows

E;:Lentral = tr (Qn) Tﬁentral(Q) —+ C,”/Ezdge, n e N, (9)

where (,, is the ratio of the central cloud’s computation energy
consumption to that of the edge cloud n for computing the
same UE n’s task. * Thus, the total energy consumption can
be calculated as’
N
Frotal = Z (EZ + anzdge + (1 _ Cn) E:Lentral) )

n=1

(10)

C. Problem Formulation

Our aim is to minimize network’s total energy consump-
tion used for task offloading and computation under cen-
tral/backhaul and edge processing latency constraints through
jointly optimizing UEs’ cloud selection decisions in ¢ =
{en}N_;, UEs’ transmit power vector p*, SBSs’ receive beam-
formers in w = {w,,})_, and the SBSs’ transmit covariance
matrices in Q. To this end, the problem is formulated as

min Etotal (11)
c,p"*,w,
st. Cl:c, €{0,1}, VYneWN,
C2: (1 —¢,) TE™(Q) < aTC%°, Vn € N,

C3: T2(p", wy) + ¢, T2 < Ty, VneN,
Ci:0<pr <Py Yn e N,

max’

C5:Q, =0, VneN.

In problem (11), C2 represents the central/backhaul processing
latency constraint, indicating that the central cloud is selected,
i.e., the backhaul is allowed to be used for task offload-
ing, only when the setting parameters can make sure that
the central/backhaul processing latency is lower than certain
percentage, e.g., «, of edge computing latency. Considering
the scarce backhaul resources, this constraint is reasonable
in practice and of great beneficial to guarantee the high-
speed backhaul transmission, avoid the abuse of backhaul and
alleviate the backhaul congestion. Here, 0 < o < 1 is a
predefined fraction for a specified scenario depending on the
central cloud and backhaul restriction. For the special case
of « = 0, central cloud becomes unavailable as indicated
in C2 and ¢, = 1 for n € N/, then problem (11) reduces
to resource allocation problem in traditional MEC networks,
which has been studied from different perspectives in the
literatures such as [12, 18-26]. C3 is the latency constraint for
edge processing, such that the sum of the access transmission
latency and the edge computing latency should not exceed a
given threshold Tiy,. Note that Tﬁdge expressed in (4) increases
with the task size [I,,, and thus when edge cloud cannot

4Cn can be determined by on, fn, and the effective switched capacitance
and the CPU frequency of the central cloud used for computing UE n’s task.
Different values of {(,,n € N} represent different relationships between
the computing energy consumption at central cloud and edge clouds, and may
have different effects on edge/central cloud selection and system performance.

SHere, the static energy consumption of UEs and SBSs consumed by the
circuit or cooling is ignored since it has negligible effect on our design.



meet its latency constraint in C3 when encounters large tasks,
e.g., T,fdgc > Tin, central cloud will be the only option
to be utilized, which further indicates the complementary
relationship between edge and central cloud computing [5].

III. ALGORITHM DESIGN

The considered problem (11) is a mixed-integer and non-
convex optimization problem because of the cloud selection
indicator c, and the non-convex objective function and con-
straints C2, C3, which is a NP-hard in general and its optimal
solution is difficult to achieve. To be tractable, we first need
to determine whether edge or central cloud computing will be
employed, and then we can optimize the transmit powers, re-
ceive beamformers and covariance matrices. Hence, a tractable
decomposition approach can be developed to solve (11) in an
iterative manner considering the fact that ¢ and {p“,w,Q}
are coupled in the objective function and constraints C2, C3
of problem (11).

A. Edge or Central Cloud Computing

As mentioned in section II-C, when the n-th edge cloud’s
computing time 798¢ is greater than the maximum allowable
time Tip, the use of edge cloud is infeasible and central
cloud computing has to be utilized, i.e., ¢, = 0. Next,
we optimize the cloud selection indicator c¢ for the case of
Tedee < Tyy,. To properly deal with the integer puzzle caused
by ¢, we first relax ¢, € {0,1} as ¢, € [0,1], and denote
¢ = {¢,}_, as the set of the relaxed cloud selection variable
Cy,. Then problem (11) with given feasible {p", w, Q} can be
decomposed into the following relaxed version

min Z L ELIEe (1 - ¢,) peentral) (12)
n=1

st. Cl:¢, ¢ [0,1], VneWN,
C2: (1 —7¢,) T (Q) < o, Vn e N,
C3: T2(p", wn) + 6, T < Ty, Vn e N.

Problem (12) is a one-dimensional linear programming, and
its solution can be given in the following two cases:

e Case 1: Without loss of generality, if the energy con-
sumption of edge computing is lower than that of central
processing for UE n’s task, i.e, ESd8e < poentral  the
objective function in (12) is a decreasing function of
¢y, Therefore, the optimal ¢}, is the maximum value that
satisfies C1 — C3, i.e.,

a u +
= [min{Tth_Tn(P 7wn),1}] 1)

edge
T7l &

~

o Case 2: if Eedee > [Eeentral  the objective function in
(12) is an increasing function of ¢, Cn, and the optimal ¢
is the minimum value that satisfies C'1 — Cd ie.,
aTedee

+
= [ -
It is seen that the relaxed edge/central cloud computing deci-
sion ¢* is reliant on the optimal {p", w, Q} of problem (11).

(14)

In the following two subsections, we will focus on obtaining
the optimal {p™*, w*} and Q*, respectively, based on a given
cloud selection decision c.

B. UEs’ Transmit Powers and SBSs’ Receive Beamformers

For fixed cloud selection decision ¢, the optimal {p"*, w*}
can be obtained by solving the subproblem of (11) as follows:

uE( ) 15
pmlg Zp (p",w (15)

s.t. C3, C4,

where C3 and C4 are the corresponding constraints expressed
in problem (12) and (11), respectively. The subproblem (15) is
non-convex (over p") and its objective function is the weighted
sum-of-ratios, which is challenging to solve. We first examine
the interplay between UEs’ transmit power vector p" and
SBSs’ receive beamformers in w.

Lemma 1. For fixed p°, the optimal w, of problem (15)

is given by
w) = eigvec {max {eig{(ﬂ,n)f1 Qn}}} ,  (16)
where Q_,, = o021 + ZZ 1izn PiRG (BT, YA and Q,, =
pibs (B3 )
Proof. See Appendix A. O

With the help of auxiliary variables t = {t,,}»_,, problem
(15) over the UEs’ transmit power vector p" for fixed w can
be equivalently transformed as

N
min It, a7
p".t
n=1
~ pu N
st. Cl: ——" <t VneN,
R?),(puaWn) "

C2:72(p", wp) >7, VneN
C3:0<pi <P ,VneN

max’
In
where 7 = 27" (Tm =)
Lemma 2. The optimal solution (p**,t*) of problem (17)
satisfies the Karush-Kuhn-Tucker (KKT) conditions of the
following N (n € N) subproblems

min (A, + M) ph — Antn R (%, Wy (18)
Ph
st C2: ya(pt,wy) > T,
C3:0<pl <P,
with
N a 2 a
M= 3 gt O Wm0 g
n ) u Hpa a
rggn  02pFlwiThg 1 (14 97)
i ( ) |WHha |2
uﬂ#’
j=1,j#n jle hjyj



where {\,}0_1 and {p,}2_, are Lagrange multipliers as-
sociated with the constraints C1 and C2 of pr()blem a7,

N 8
a Ejsén /\Jt7 8p Z]#ﬂ i apy 81) - For
w*), A\, and t,, are respectzvely calculated as

respectively, and M,, =
optimal (p™*

1,
An = B (20)
R (pU*, W)
pu*
n=———". 21
R (pU*, W)
Proof. See Appendix B. O

Given )\, and t,, the subproblem (18) is convex w.r.t. pb.
Therefore, we have the following theorem.

Theorem 1. The solution of subproblem (18) is given by

f n b
A if G, < — A
P =19 G, if A— <G, <P, (22)
Pmax? lf G > PI.L1’11'1X7
A+ M, B, Apitn ita, <
pri=4 A, 2741 A, (23)
0, otherwise,
0, if G, <P},
v = B, Antn . 24)
" — " )\, — M, oth S
2 Pr_+1/A, , , otherwise,
N |w, by, 12 N
where we define A, = G, =

zilmmwffh“ P whn, 2’

Ba Anty L and y¥ and v} are respectively the optimal

2 X, +M, A,
Lagrange mulnplzers associated with the constraints C2 and
C3 of problem (13).

Proof. See Appendix C. O

In light of the results in Lemma 1, Lemma 2 and Theo-
rem 1, we provide an iterative approach to effectively solve
problem (15), which is shown in Algorithm 1.

Algorithm 1 Solution of Problem (15)

1: Initialize p}, = P2, ., Vn. Set w,, based on Lemma 1.

2: Repeat

3: a) Given w, Loop:
i): Compute M,,, A\, and t, based on Lemma 2.
ii): Update p;, and p,, based on Theorem 1.
Until convergence.

4: b) Update w based on Lemma 1.

5: Until convergence, and obtain the optimal {p"*, w*}.

The convergence of Algorithm 1 can be guaranteed since
the objective function of problem (15) decreases with the
iteration index (in step 3 and step 4 of Algorithm 1), which
is indicated from optimizing p" and w in each iteration as
shown in Lemma 1 and Lemma 2, respectively.

C. SBSs’

For fixed cloud selection decision ¢, the optimal Q* can be
obtained by solving the following subproblem:

Transmit Covariance Matrices

Mz

Hgn y(Q) = (1-¢,) tr (Qn) Trientml(Q) (25)
n=1
st. C2:RP(Q)>(1-72,) Iedge VneN, C5,

where C2 and C5 are the corresponding constraints expressed
in problem (12) and (11), respectively, and C2 is re-expressed
in an equivalent form here. Problem (25) is non-convex due
to the non-convexity of the objective function and constraint
C2 which cannot be solved directly. Thus, we resort to a suc-
cessive pseudoconvex approach, which has many advantages
such as fast convergence and parallel computation [37].

First, let Q' denote the Q value in the I-th iteration. Thus
the non-convex item tr (Q,,) T**#(Q) for each n € N in
the objective function can be approximated as a pseudoconvex
function at Q!, which is written as

=~ 0..0ha ntr(Qn)
yn(Qna Q ) - R}TDL(QT” QZ)
where xn(Qn) =3, fjtf(Q§)<(Qn - Q) Vg Rb(Q’)>

is a function obtained by linearizing the non-convex function

Z;\;n tr (Q) T7""*(Q) in Q,, at the point Q'. Based on
(26), we can approximate the objective function y (Q) of
problem (25) at Q' as

Q Ql :Z _(n

n=1

+ Xn(Qn)y (26)

2

U (Qn; Q). 27)

It is easily seen that 7(Q; Q') is pseudoconvex and has the
same gradient with y (Q) at Q = Q! [37].

Then, by equivalently rewriting the non-concave function
RP(Q) in constraint C2 as a difference of two concave
functions as expressed in (28a) according to its definition
in (6), and leveraging the first-order Taylor expansion at
Q! for the second concave function denoted as RP?(Q) =
BP log, det (021 + Zf\;n HPQ; (H?)H>, RP(Q) can be ap-
proximated as

RY(Q) = B log, det (0°T + E(Q)) — RY2(Q)
> BP log, det (021 + E(Q)) - R22(Ql) -

(28a)

N
> ((Q; - Q). Vor RA(Q) 2 RH(Q), (28b)
j#n ’
where 2 (Q) = Y, HPQ, (H?)H Here, R (Q) expressed
in (28b) is a concave function over Q.
Therefore, at Q', the original problem (25) can be approx-
imately transformed as

wmin 7(Q: Q" (29)

st. C2:R2(Q) > (1—¢,) VneN, C5.

Ted ge’

The objective function of problem (29) is a sum of N
pseudoconvex functions each containing a fractional function



and a linear function. In addition, all the constraints in problem
(29) are convex. Hence, by leveraging the Dinkelbach-like
algorithm [38] and introducing a set of auxiliary variables for
the N fractional functions in the objective function, problem
(29) can be transformed into a solvable convex optimization
problem, which can be effectively solved by CVX [39] and
owns provable convergence [37]. Let BQ' represent the opti-
mal solution of problem (29) at the [-th iteration, and thus the
value of Q in the next (I + 1)-th iteration can be updated as

QM =Q +<«(H(BQ' - Q), (30)

where ¢(l) is the step size at the [-th iteration and can be
obtained through the successive line search, and BQ! — Q' is
the descent direction of y (Q). Thus, the solution of problem
(25) can be iteratively obtained.

Based on the aforementioned analysis of optimizing the
variables {p"*,w*, Q*}, Algorithm 2 is proposed to solve
the original problem (11).

Algorithm 2 Solution of Problem (11)
1. Initialize pj, = P, .. Vn. Set w;, based on Lemma 1.
Based on the constraint C3 of problem (12), set ¢,, =
a u +
ToLapwn) 3§11, where § € (0,0.5) is
a tolerant value to avoid the selection of solely edge
clouds or central cAloud at the initial point. Then, based
on the constraint CdZ of problem (12), Q is set to meet
Teentral(Q) = ‘XlTj;l through the use of ZF precoding
with equal power allocation at each SBS.

i

2: Repeat
3: a) Given {c,}V_;:
i): Update {p", w} based on Algorithm I.
ii): Loop:
ii-1): Solve problem (29) via Dinkelbach-like
algorithm [38].
ii-2): Update Q' based on (30).
Until convergence, and obtain the updated Q.
4: b) Update {¢,,})_, according to subsection III-A.

5: Until convergence, and obtain solution {c*, p"*, w*, Q*},
in which c* is obtained by rounding the cloud selection
solution of problem (12), i.e., ¢, and p"™, w*, Q* are
obtained based on c*.

D. Convergence and Complexity

The convergence of Algorithm 2 is easy to prove in light of
the guaranteed convergence of Algorithm 1, the Dinkelbach-
like algorithm used to solve problem (29) [38], and the update
process of the cloud selection ¢ illustrated in Section III-A.
Note that the objective function of problem (12) is a decreasing
function of the iteration index (in step 3 and step 4 of
Algorithm 2), which ensures the convergence of Algorithm 2.

The proposed Algorithm 2 enjoys an acceptable complexity
as well as an easy implementation. In each iteration, the ma-
jority of computational complexity lies in solving subproblem
(15) for obtaining the optimal (p"*, w*) and the approximate
subproblem (29) for obtaining the optimal Q* with a given c.

In the proposed algorithm, problem (15) can be equivalently
transformed into /N independent subproblems (18) and thus
can be easily solved in a parallel way. Moreover, the optimal
solution of each subproblem has closed-form expressions as
indicated in Theorem 1, which only generates a complexity
ordered by O(N). For the approximate subproblem (29), the
Dinkelbach-like algorithm is proved to exhibit a linear con-
vergence rate [38] and the corresponding convex optimization
problem can be efficiently solved by CVX, thus the generated
complexity is acceptable in general.

In order to further reduce the complexity of solving the op-
timization problem for minimizing the network’s total energy
consumption, we will consider the case of applying the mas-
sive MIMO technology at the MBS in the following section.
It demonstrates that the complexity of the proposed algorithm
can be substantially reduced while even better performance
can be achieved compared to the case with traditional MIMO
backhaul.

IV. MASSIVE MIMO BACKHAUL

In the prior sections, we have studied the synergy of com-
bining edge-central cloud computing with traditional multi-cell
MIMO backhaul. Since massive MIMO has been one of the
key 5G radio-access technologies, in this section, we further
consider the time-division duplex (TDD) massive MIMO aided
backhaul in the Rayleigh fading environment, i.e., MBS is
equipped with a very large number of antennas and SBSs only
use one single transmit antenna (M > N).

There are two main merits for massive MIMO backhaul
transmission: 1) Since SBSs and MBSs are usually still and the
backhaul channels will become deterministic, a phenomenon
known as “channel hardening” [40,41], and thus the backhaul
channel coherence time will be much longer than ever before,
which means that the time spent on uplink channel estimation
will be much lower. 2) As shown in [42], simple linear
processing methods can achieve nearly-optimal performance.
As a result, we will consider two linear detection schemes at
the MBS, namely MRC and ZF, to provide low-complexity
massive MIMO backhaul solutions.

A. MRC Receiver at the MBS

When MRC receiver is applied at the MBS, we consider
a lower-bound achievable backhaul rate for tractability, which
can well approximate the exact massive MIMO transmission
rate as confirmed in [43]. As such, given the cloud selection
decision ¢, the backhaul related problem (25) reduces to

N

1
min ) (1=60) 6 7o g5 31)
4 7;1 ( Ry (q)
~ R I,
st C2: Rp(q) > (1-0,) — 50, V€N,
Ty 8¢
C5:q, >0, Vn €N,
where ¢, is the n-th SBS’s transmit power, q = [g1, - , qn],
and RP(q) = BPlog, (1+ (M —1) =5 InBn i

SN isn aiBitol )
which f; is the large-scale fading coefficient of the link



between SBS 7 and the MBS [43]. Problem (31) is non-convex,
but can be equivalent to problem (15) with w,, = 1. Thus,
it can be directly solved by using Algorithm 1. Note that
when using Algorithm 1, SBSs’ initial feasible transmit power
vector q needs to be carefully selected. Here, we assume
that the present fractional power control solution applied in
3GPP-LTE [44] can satisfy the constraint C2 in (31), i.e.,
qn = (dn)ewb, where d,, is the communication distance
between the n-th SBS and the MBS, ¢ € [0,1] is the pathloss
compensation factor, and w® is the pathloss exponent of
the backhaul link. For the special case of full compensation
(e = 1), the number of MBS’s antennas needs to meet

(A—cp)ln
M>1+(N-1) <2 BPaTsTE _ 1>. (32)

B. ZF Receiver at the MBS

When ZF receiver is applied at the MBS, we adopt the cor-
responding tight lower-bound achievable rate shown in [43].
Given the cloud selection decision ¢, the backhaul related
problem (25) reduces to the following version

~\ _Gndn
min 1-¢, (33)
i > (1=8) g
~ = In
st. C2: R,rbl(qn) Z (1 - Cn) W’ Vn € N,

C5:q, >0, YneN,

where RP(g,) =

BP log, (1 + (M - N) q"5">. Since

on

()
R;&H) is an increasing function of ¢, ( #j" > 0), the
optimal ¢, is the minimum value that meets the constraints
C2 and C5 in (33), ie.,

(1=en)In
9 BbargdE _

(M=N) &

*

q = , VneN. (34)

Based on the above analysis, when massive MIMO backhaul
is employed at the MBS, the solution of problem (11) can still
be obtained by using the proposed Algorithm 2, where the
optimal SBSs’ transmit powers are given by the solution of
problem (31) for the MRC receiver or (34) for the ZF receiver.

In comparison with the case of using traditional MIMO
backhaul, the MRC and ZF linear detection schemes for the
case with massive MIMO backhaul links can enjoy super-
low complexity. For MRC scheme, the problem (31) can
be effectively solved by Algorithm 1, and its computational
complexity is with the order of O(NN). For ZF scheme, the
closed-from solution of problem (33) can be directly obtained,
and its complexity order is O(1). Hence, applying the massive
MIMO technology at the MBS can significantly facilitate the
cooperation between the edge and central cloud by providing
easier bur more efficient backhaul offloading for UEs to access
the central cloud computing services.

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of the proposed algorithms and shed light
on the effects of the key parameters including the ratio of
energy consumption between central and edge cloud com-
puting (¢ = (,,n € N), the task size (I = I,,n € N),
the latency threshold of edge processing (7iy), the required
fraction of edge computing time for backhaul transmission (),
and the edge clouds’ CPU clock frequency (f = f,,n € N).
The performance of some practical schemes are also given
as benchmarks, including the “Edge-cloud-only”, “Central-
cloud-only” schemes, and a scheme with fixed cloud selection,
denoted as “Half edge, half central” scheme where half number
of UEs choose edge cloud and the other half use central
cloud to complete their computing tasks. Besides, the “Initial
feasible solution”, representing the case with the initial values
setting in Algorithm 2, is also given as a baseline to show
the performance improvement of optimizing some system
parameters. Note that the performance indicators (the total
energy consumption and the percentage of UEs that select edge
cloud computing) shown in the following figures are averaged
over 500 independent channel realizations. All the small-scale
fading channel coefficients follow independent and identically
complex Gaussian distribution with zero mean and unit vari-
ance. The pathloss between SBSs and UEs and between MBS
and SBSs are respectively set as 140.7 4 36.7 log;, d(km) and
100.7 4 23.5log; d(km) according to 3GPP TR 36.814 [45],
where d is the distance between two nodes. The other basic
simulation parameters are listed in Table 1.

A. Improvement with Traditional MIMO Backhaul

In this subsection, numerical results for the integrated edge
and central cloud computing system with traditional MIMO
backhual are presented in comparison with the benchmarks
mentioned before. These results can proper demonstrate the
performance enhancement of using the proposed algorithm
through jointly optimizing the key system parameters includ-
ing cloud selection decision, UEs’ transmit powers, SBSs’
receive beamformers and transmit covariance matrices.

Fig. 2 shows the effect of the uniform computing energy
ratio ¢ = (,,n € N on the total energy consumption of the
system. We see that the energy consumption of all the schemes
are non-decreasing functions of (, due to the fact that the
energy cost of central cloud computing increases with (. It is
confirmed that the proposed solution outperforms all the base-
lines, i.e., the energy cost can be significantly reduced. The
performance improvement is particularly noticeable compared
with the Edge-cloud-only scheme in the range of { < 1, the
traditional Central-cloud-only scheme in the range of ¢ > 1,
and the “Half edge, half central” scheme in the whole range
of (. In addition, the proposed solution also consumes much
less energy than the initial feasible solution, demonstrating
the performance enhancement of jointly optimizing the system
parameters.

Fig. 3 depicts the total energy consumption of the system
versus the uniform task sizes I = I,,,n € N for the cases of
¢ =0.9 and ¢ = 1.1. It is easy to understand that computing
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TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value
Bandwidth for an access or backhaul link B2,BP 10 MHz
Noise power spectral density for an access or backhaul link o2,neEN, o? -174 dBm/Hz
Pathloss exponent for access link w? 3.67

Pathloss exponent for backhaul link wP 2.35

Pathloss compensation factor € 1

Radius of the small cell ré 50 m

Radius of the macro cell rP 500 m
Number of SBSs/UEs N 6

Number of antennas for each SBS L 2

UEs’ maximum transmit power P2 23 dBm
Required CPU cycles per bit Kn, n€N 300 cycles/bit
the effective switched capacitance of the SBSs’ processor 0=0n, nEN 10—28

The tolerant value in Algorithm 2 [} 0.1

—O— Proposed solution
=+ |nitial feasible solution
= ®# =Edge-cloud-only
—e— Central-cloud-only
—A— Half edge, Half central

I I I I I I I I I
092 094 096 0.98 1 102 104 106 1.08
¢
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Fig. 2. The total energy consumption of the system with traditional MIMO
backhaul versus the uniform computing energy ratio ¢: M = 16, Ty, = 0.3
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Fig. 3. The total energy consumption of the system with traditional MIMO
backhaul versus the uniform task size I: M = 16, Ty, = 0.3s, f = f, =6
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Fig. 4. The total energy consumption of the system with traditional MIMO
backhaul versus the latency threshold of edge processing Tin,: M = 16,
I=1,=5Mbits, f=f, =6GHzforn € N, a =0.1.

more input data consumes more energy, and thus the energy
cost of each scheme increases with I. Again, we see that the
proposed solution is superior to the baseline solutions in all
the cases. For the case of ( = 0.9, the performance of the
Central-cloud-only solution is very close to the proposed one
since central cloud is dominant in this case, i.e., more UEs tend
to use central cloud computing for saving energy. For the case
of ( = 1.1, the advantage of the proposed scheme becomes
more obvious compared with the baselines, and actually this
case is more common in practice since the central cloud tends
to consume more energy for computing because of the higher
CPU frequency. We observe that the results of the proposed
solution approach to those of the Central-cloud-only solution
when I becomes large, indicating that more UEs tend to select
the central cloud for computing, i.e., central cloud computing
plays an important role in dealing with relatively large tasks.
The reason is that when the task size is large, the edge
processing latency constraint C3 of problem (11) may be no
longer satisfied due to the limited edge computing capability,
and central cloud has to be chosen for computation.

Fig. 4 shows the total energy consumption of the system
varying with the latency threshold of edge processing for the
cases of ( = 0.9 and ¢ = 1.1. It is seen that the proposed
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solution is a non-increasing function of 7};, and outperforms
the baselines in both cases. The Central-cloud-only solution
is insensitive to T}y, and its performance is almost invariant
thanks to its super computing capability for low computing
latency. Note that all the solutions consume almost same
amount of energy when T}y is small, e.g., Tip, = 0.25 s in
this figure. The reason is that the edge processing latency
constraint C3 cannot be met and only central cloud computing
can be employed to satisfy the latency constraints. For the
case of ¢ = 0.9, the performance gap between the proposed
solution and the Central-cloud-only is small since central
cloud computing is dominant, and both solutions performs
better than the Initial feasible solution. It is interesting to note
that the Initial feasible solution is an increasing function of
Tin € [0.25,0.4] s when ¢ = 0.9. This is because the edge
cloud computing becomes more feasible as Ti;, increases, and
the initial solution allowing more UEs to choose edge cloud for
computing while in fact central cloud computing saves more
energy, which indicates the importance of optimizing cloud
selection in improving the system performance. For the case
of ¢ = 1.1, the consumed energy of the proposed solution
decreases with T}, since more UEs are allowed to choose the
energy-efficient edge cloud computing for large T}y,.

B. Benefits of Massive MIMO Backhaul

In this subsection, we mainly illustrate the performance of
the considered heterogeneous edge/central cloud computing
system with massive MIMO backhaul, to confirm the benefits
of equipping massive antennas at the MBS in improving
the system performance. Here, we focus on MRC and ZF
beamforming at the MBS, as studied in Section IV.

Fig. 5 and Fig. 6 depict the total energy consumption and
the corresponding percentage of UEs that select edge cloud
for computing versus «, respectively. It is seen from Fig. 5
that the energy consumption of each scheme decreases with «
since less power will be consumed for backhaul transmission
with a higher « according to the backhaul latency constraint
C2 of problem (11). This result is also reflected by Fig. 6
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Fig. 6. The percentage of UEs that select edge cloud computing versus o
M = 128 for massive MIMO backhaul, M = 8 for traditional MIMO
backhaul, Ty, = 03s,( =(, = 0.9, =1, =5 Mbits, f = f, =6
GHz for n € N.

where the percentage of UEs using edge cloud computing
decreases, which means that more UEs choose to use central
cloud for computing as « increases so as to save more energy.
Obviously, the energy consumed by the ZF scheme is less
than that of the MRC scheme and the solution with traditional
MIMO backhaul, which demonstrates the benefits of using ZF
beamforming and large antenna arrays at the MBS. Moreover,
for the ZF scheme, the percentage of UEs using edge cloud
is lower than that of the MRC and traditional MIMO schemes
when o < 0.4. In contrast, the MRC scheme only uses the
edge cloud for computing when o < 0.2. This is because
the backhaul latency constraint C2 in (11) for central cloud
processing cannot be satisfied with a small « when MRC re-
ceiver is adopted at the MBS due to the inter-SBS interference.
Based on these two figures, we see that the consumed energy
of the ZF scheme as well as the corresponding percentage of
UEs served by edge cloud decrease very slowly, and is almost
unchanged for o > 0.2, which further indicates that the ZF
scheme can provide more stable and higher-speed backhaul
transmission for computation tasks offloading.

Fig. 7 shows the total energy consumption of the system
versus the uniform task size I for the cases of ¢ = 0.9 and
¢ = 1.1. Similar to Fig. 3, all the curves increase with I as
expected. The ZF scheme outperforms the MRC scheme and
the traditional MIMO scheme. For the case of ( = 0.9, the ZF
scheme and the traditional MIMO scheme are dominated by
central cloud computing, while the MRC scheme experiences
a gradual transition from edge-cloud-dominant to Central-
cloud-dominant and more UEs choose to use central cloud for
computing so as to satisfy the processing latency constraint
as well as saving energy. For the case of ¢ = 1.1, all the
schemes are edge-cloud dominant when I < 5 Mbits, and then
gradually become Central-cloud-dominant as [ increases. It is
confirmed that the ZF scheme with massive MIMO backhaul
has the advantage of handling the computation-intensive tasks.

Fig. 8(a) and Fig. 8(b) depict the total energy consumption
of the system versus the edge clouds’ uniform CPU clock
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Fig. 7. The total energy consumption of the system versus the uniform task
size I: M = 128 for massive MIMO backhaul, M = 8 for traditional MIMO
backhaul, Ty, = 0.3 s, f = fn, =6 GHz for n € N/, a = 0.6.

frequency f = f,,n € N in the case of ( = 0.9 and ¢ = 1.5,
respectively. According to these two figures, we see that the
effect of f is heavily reliant on both the computing task size
I and ¢. When [ is not large and ( < 1, network’s energy
consumption may increase with f as shown in Fig. 8(a),
where the curves of all the schemes increase with f and
the increasing rates become higher when enlarging I. This
is due to the fact that when I is not large and ( < 1, the
energy consumption of the central cloud computing plays a
dominant role in contributing to the total energy consumption.
In this case, the advantage of using ZF scheme becomes more
obvious as f grows large. However, when ( > 1, network’s
energy consumption may decrease with f in certain scenario
as shown in Fig. 8(b), where there is an obvious decrease as
f € [5,6] x 10° cycles/s in the case of I = 5 Mbits. The
reason is that when f is small, e.g., less than 4 x 10° cycles/s
in Fig. 8(b), the edge processing latency constraint C3 may
be not satisfied and central cloud computing becomes the
only option. As f increases, edge cloud computing becomes
feasible for more UEs to save energy, and the total energy cost
will decrease. In addition, It is seen from Fig. 8(b) that the
energy consumption of the three considered schemes are very
close since the edge cloud computing is dominant.

VI. CONCLUSION

In this paper, we studied the joint design of computing
services when edge cloud computing and central cloud com-
puting coexist in a two-tier HetNet with MIMO or massive MI-
MO self-backhaul. By jointly optimizing the cloud selection,
the UEs’ transmit powers, the SBSs’ receive beamforming
vectors and the transmit covariance matrices, the network’s
energy consumption can be minimized while meeting both
the edge processing and central processing (backhaul) latency
constraints. An iterative algorithm was proposed to solve the
formulated non-convex mixed-integer optimization problem,
which can ensure the convergency and that better performance
can be achieved than any existing feasible solutions. The
simulation results have further confirmed that the proposed
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Fig. 8. The total energy consumption of the system versus SBSs’ uniform
CPU frequency f.

solution can greatly enhance the system performance, especial-
ly comparing with the edge-cloud-only and central-cloud-only
computing schemes, indicating the value of the coexistence
and cooperation between edge and central cloud. Moreover,
we showed that the massive MIMO backhaul can largely
decrease the system complexity while achieving even better
performance.

APPENDIX A: PROOF OF LEMMA 1

Based on problem (15), we can easily find that each SBS’s
receive beamformer w,, aims to maximize the SINR, i.e.,

max ’y,(f‘)(p“,wn) (A1)
Problem (A.1) can be rewritten as
He)

max Wn 3InWn_ (A2)

w, wHQ ,w,’
Note that (A.2) is a generalized eigenvector problem and the
optimal w} is the corresponding eigenvector associated with
the largest eigenvalue of the matrix (£2_,) ' €2,.. Thus, we
obtain the result in (16).



APPENDIX B: PROOF OF LEMMA 2

The lagrange function of problem (17) is

L (", t A, 1, v) ZI tn+ZAn P = ta Ry (", W)
+ Z,uﬂ ’Yn p 7W7l))
+ Z Vn n max) ’ (B.1)

where { A\, tin, un} _, are non-negative lagrange multipliers.
Based on the definition of KKT conditions, we have

oL dR? a2

ops opy " opy

N N

8Ra Ny

Z)\ it Z,uj L =0, (B.2)

Jj#n n Jj#n 8pn
gi’ I, — A\ R® =0, (B.3)
A (ph — Ra) =0, (B4)
fin (T —2) =0, (B.5)
Un (p Inax) =0. (B.6)

Rt e () wihn P o _

In (B.2), we have opn 1H2W’ and py =

(5) 0, Boced on (B.2)-(B.6 b hat th
W ased on (B.2)—(B.6), we observe that the

N subproblems shown in (18) has the same KKT conditions
with problem (17). In other words, problems (17) and (18)
have the same optimal solution. In addition, since Rz >0,
we have ), = In 2o based on
(B.4). L1kew1se by cons1dermg the KKT condltlons of N
subproblems in (18), we find that they are identical to those
shown in (B.2)-(B.6).

APPENDIX C: PROOF OF THEOREM 1

Based on (B.2), (B.5) and (B.6) of Appendix B, KKT
conditions for subproblem (18) is given by

An + M, — 1?2%1 — pnAp + v, =0, (C.1)
pin (T = 73) = 0, (C.2)
Vn (P — Prax) = 0, (C.3)
lw, b2
where A,, = ¥ s pl|WHh“ Bl From (C.1) and

the definition of 72 = p A, in (2), we see that the optimal
pr* meets

B, Antn 1
 In2 M\, + M, —uiA, + v

Py (C.4)

Ay’
where p and v}, satisfy the KKT conditions (C.2) and (C.3),
respectively. To explicitly obtain {pi*, u*, v}, we need to
consider the following cases:

o Case 1: When pp* € (1, Phac)> Hnn = v = 0

max n

according to (C.2) and (C.3). In this case, pi* = G,, with

G, =2 /\/\TI‘M — 5 according to (C.4). Therefore, if

Gn € [A P L pm = @ and gl = vt = 0.

o Case 2: If G, < Ai, it is seen from (C.4) that u* > 0.
In this case, p.* = Ai and v} = 0 according to (C.2)
and (C.3). Substltutmg por = Ai and v}, = 0 into (C.4),
we obtain ¥ = ’\"XM” — Ba /\T'jff

e Case 3: If G, > Pmax, it is seen from (C.4) that v}, > 0.
In this case, pp* = P2, and p) = 0 according to (C.3)
and (C.2). Substltutmg p”* = Py, and py = 0 into
(C.4), we obtain v, = 1’32 Ttl/l\n —An — M,.

Thus, we get the optimal {p}*, u*, v} shown in Theorem 1.

X
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