7 research outputs found

    Space-efficient Feature Maps for String Alignment Kernels

    Get PDF
    String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVM in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, which limits large-scale applications in practice. We address this need by presenting the first approximation for string alignment kernels, which we call space-efficient feature maps for edit distance with moves (SFMEDM), by leveraging a metric embedding named edit sensitive parsing (ESP) and feature maps (FMs) of random Fourier features (RFFs) for large-scale string analyses. The original FMs for RFFs consume a huge amount of memory proportional to the dimension d of input vectors and the dimension D of output vectors, which prohibits its large-scale applications. We present novel space-efficient feature maps (SFMs) of RFFs for a space reduction from O(dD) of the original FMs to O(d) of SFMs with a theoretical guarantee with respect to concentration bounds. We experimentally test SFMEDM on its ability to learn SVM for large-scale string classifications with various massive string data, and we demonstrate the superior performance of SFMEDM with respect to prediction accuracy, scalability and computation efficiency.Comment: Full version for ICDM'19 pape

    Kernel Functions for Graph Classification

    Get PDF
    Graphs are information-rich structures, but their complexity makes them difficult to analyze. Given their broad and powerful representation capacity, the classification of graphs has become an intense area of research. Many established classifiers represent objects with vectors of explicit features. When the number of features grows, however, these vector representations suffer from typical problems of high dimensionality such as overfitting and high computation time. This work instead focuses on using kernel functions to map graphs into implicity defined spaces that avoid the difficulties of vector representations. The introduction of kernel classifiers has kindled great interest in kernel functions for graph data. By using kernels the problem of graph classification changes from finding a good classifier to finding a good kernel function. This work explores several novel uses of kernel functions for graph classification. The first technique is the use of structure based features to add structural information to the kernel function. A strength of this approach is the ability to identify specific structure features that contribute significantly to the classification process. Discriminative structures can then be passed off to domain-specific researchers for additional analysis. The next approach is the use of wavelet functions to represent graph topology as simple real-valued features. This approach achieves order-of-magnitude decreases in kernel computation time by eliminating costly topological comparisons, while retaining competitive classification accuracy. Finally, this work examines the use of even simpler graph representations and their utility for classification. The models produced from the kernel functions presented here yield excellent performance with respect to both efficiency and accuracy, as demonstrated in a variety of experimental studies

    D2 histosketch: discriminative and dynamic similarity-preserving sketching of streaming histograms

    Get PDF
    Histogram-based similarity has been widely adopted in many machine learning tasks. However, measuring histogram similarity is a challenging task for streaming histograms, where the elements of a histogram are observed one after the other in an online manner. The ever-growing cardinality of histogram elements over the data streams makes any similarity computation inefficient in that case. To tackle this problem, we propose in this paper D2HistoSketch, a similarity-preserving sketching method for streaming histograms to efficiently approximate their Discriminative and Dynamic similarity. D2HistoSketch can fast and memory-efficiently maintain a set of compact and fixed-size sketches of streaming histograms to approximate the similarity between histograms. To provide high-quality similarity approximations, D2HistoSketch considers both discriminative and gradual forgetting weights for similarity measurement, and seamlessly incorporates them in the sketches. Based on both synthetic and real-world datasets, our empirical evaluation shows that our method is able to efficiently and effectively approximate the similarity between streaming histograms while outperforming state-of-the-art sketching methods. Compared to full streaming histograms with both discriminative and gradual forgetting weights in particular, D2HistoSketch is able to dramatically reduce the classification time (with a 7500x speedup) at the expense of a small loss in accuracy only (about 3.25%)

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems
    corecore