
Kernel Functions for Graph
Classification

Aaron M. M. Smalter

Submitted to the Department of Electrical Engineering &
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of
the requirements for the degree of Master of Science

Thesis Committee:

Dr. Jun Huan: Chairperson

Dr. Gerald Lushington

Dr. Xue-wen Chen

Dr. Mahesh Visvanathan

Date Defended

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KU ScholarWorks

https://core.ac.uk/display/213387175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Aaron M. M. Smalter certifies

that this is the approved version of the following thesis:

Kernel Functions for Graph Classification

Committee:

Chairperson

Date Approved

i

Acknowledgements

I would like to thank my advisor, Dr. Jun Huan, for his enthusiasm and

direction throughout my research work. Truly, to him I owe a great debt for

guiding me into this field of work that I enjoy so much. Next, I would like to thank

Dr. Gerald Lushington for his support and employ in the Molecular Graphics and

Modeling Laboratory, which has been nothing short of invaluable.

I would also like to thank my mother Janis, my father Martin, my brother

Colin and the rest of my family, extended and otherwise - without all of you I

would never have made it to where I am today. I thank Rachel Diana Hall, for

her love and encouragement during these recent months of study, for she has been

a beacon throughout many trials. Finally, a hearty thanks to all my friends in

Lawrence and everywhere else.

To the University of Kansas I owe not only my education, but also the inspi-

ration I felt as a child in the activities, services, and culture provided to me and

everyone else in the Lawrence community. It is these experiences that first showed

me the value of learning and knowledge.

This work has been supported by the Kansas IDeA Network for Biomedical

Research Excellence (NIH/NCRR award #P20 RR016475), the KU Center of Ex-

cellence for Chemical Methodology and Library Development (NIH/NIGM award

#P50 GM069663), and NIH grant #R01 GM868665.

ii

Abstract

Graphs are information-rich structures, but their complexity makes them dif-

ficult to analyze. Given their broad and powerful representation capacity, the

classification of graphs has become an intense area of research. Many established

classifiers represent objects with vectors of explicit features. When the number of

features grows, however, these vector representations suffer from typical problems

of high dimensionality such as overfitting and high computation time. This work

instead focuses on using kernel functions to map graphs into implicity defined

spaces that avoid the difficulties of vector representations.

The introduction of kernel classifiers has kindled great interest in kernel func-

tions for graph data. By using kernels the problem of graph classification changes

from finding a good classifier to finding a good kernel function. This work ex-

plores several novel uses of kernel functions for graph classification. The first

technique is the use of structure based features to add structural information to

the kernel function. A strength of this approach is the ability to identify spe-

cific structure features that contribute significantly to the classification process.

Discriminative structures can then be passed off to domain-specific researchers

for additional analysis. The next approach is the use of wavelet functions to

represent graph topology as simple real-valued features. This approach achieves

order-of-magnitude decreases in kernel computation time by eliminating costly

topological comparisons, while retaining competitive classification accuracy. Fi-

nally, this work examines the use of even simpler graph representations and their

utility for classification. The models produced from the kernel functions presented

here yield excellent performance with respect to both efficiency and accuracy, as

demonstrated in a variety of experimental studies.

iii

Contents

Acceptance Page i

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 8

2.1 Chemical Structure . 8

2.2 Graph Classification . 10

2.3 Kernel Functions . 11

2.4 Graph Database Mining . 12

2.5 Wavelet Analysis for Graphs . 13

3 Related Works 15

3.1 Pattern Mining . 16

3.1.1 Frequent Subgraphs . 17

3.1.2 Chemical Properties and Target Prediction 18

3.2 Vector-based Classification . 18

3.3 Kernel Functions for Graph Classification 19

3.4 Wavelets Functions for Graphs . 21

4 Alignment Kernels with Pattern-based Features 23

4.1 Structure-based Pattern Mining For Chemical Compound Classifi-

cation . 24

4.1.1 Structure Pattern Mining 24

iv

4.1.2 Optimal Assignment Kernel 25

4.1.3 Reduced Graph Representation 26

4.1.4 Pattern-based Descriptors 27

4.2 Experimental Study . 28

4.2.1 Data Sets . 29

4.2.2 Methods . 30

4.2.3 Results . 31

4.3 Conclusions . 33

5 Alignment Kernels with Approximate Pattern Features 35

5.1 GPD: A Graph Pattern Diffusion Kernel for Accurate Graph Clas-

sification . 36

5.1.1 Graph Similarity Measurement with Alignment 36

5.1.2 NP-hardness of Graph Alignment Kernel Function 36

5.1.3 Graph Node Alignment Kernel 38

5.1.4 Pattern Diffusion . 40

5.1.5 Pattern Diffusion Kernel and Graph Classification 42

5.2 Experimental Study . 43

5.2.1 Data Sets . 44

5.2.2 Feature Sets . 45

5.2.3 Classification Methods . 46

5.2.4 Experimental Results . 47

5.3 Conclusions . 52

6 Matching Kernels with Approximate Pattern-based Features 53

6.1 GPM: A Graph Pattern Matching Kernel with Diffusion for Accu-

rate Graph Classification . 54

6.1.1 Graph Matching Kernel 54

6.1.2 Graph Pattern Matching Kernel 56

6.1.3 Graph Pattern Matching Kernel with Pattern Diffusion . . 57

6.1.4 Connections of Other Graph Kernels 59

6.1.5 Pattern Diffusion Kernel and Graph Classification 61

6.2 Experimental Study . 62

6.2.1 Data Sets . 63

v

6.2.2 Kernel Functions . 65

6.2.3 Experimental Results . 65

6.3 Conclusions . 67

7 Graph Wavelets for Topology Comparison 68

7.1 Graph Wavelet Alignment Kernels for Drug Virtual Screening . . 69

7.1.1 Graph Alignment Kernel 70

7.1.2 Simplified Graph Alignment Kernel 70

7.1.3 Graph Wavelet Analysis 71

7.2 Experimental Study . 76

7.2.1 Data Sets . 76

7.2.2 Methods . 78

7.2.3 Results . 79

7.3 Conclusions . 81

8 Future Work and Overall Conclusions 83

References 85

vi

List of Figures

2.1 An example chemical structure. 9

2.2 Graph representations of chemicals. 9

2.3 A Database of three labeled graphs. 13

3.1 Example graphs and frequent subgraphs (support = 2/3). 17

4.1 Experimental workflow for a cross-validation trial with frequent

subgraph mining. 28

5.1 A maximum weighted bipartite graph for graph alignment. 39

5.2 Effect of diffusion rate and time on GPD classification accuracy. . 52

6.1 The maximum weighted bipartite graph for graph matching. . . . 55

6.2 Example pattern membership functions for GPM kernel. 57

6.3 Average accuracy for kernel functions and data sets in GPM exper-

iments. 66

7.1 Two wavelet functions in three dimensions, Mexican hat and Haar. 69

7.2 A chemical graph and hop distances. 74

7.3 Comparison of computation times between methods for WA exper-

iments. 82

vii

List of Tables

4.1 Data set statistics for OAPD experiments. 29

4.2 Average and standard deviation of 10-fold cross-validation accuracy

for OAPD experiments. 31

4.3 SMARTS string of highly ranked chemical patterns from OAPD

method. 32

5.1 Data set and class statistics for GPD experiments. 45

5.2 Comparison of GPD kernel to CBA. 48

5.3 Comparison of different graph kernel functions and feature sets in

GPD experiments, with strict subgraph matching. 50

5.4 Comparison of different graph kernel functions and feature sets in

GPD experiments, with approximate subgraph matching. 51

6.1 Characteristics of data sets in GPM experiments. 63

7.1 Data set and class statistics for WA experiments. 77

7.2 Prediction results of cross-validation trials for WA experiments. . 79

7.3 Running time results for WA experiments. 81

viii

Chapter 1

Introduction

This work of this thesis addresses the problem of graph classification through

study of kernel functions. Classification of objects in a vector space is well re-

searched and many methods exist. They are all limited, however, by explicit and

often high dimensional feature vectors. Kernel classifiers instead embed objects

in an implicit space and hence avoid the difficulties of managing a large number

of explicit features. Kernels are especially useful in graph classification where the

objects being modeled have a complex structure.

While kernel functions for graphs have received a great deal of attention re-

cently, most approaches are stymied by graph complexity. Precise comparisons are

slow to compute, but simpler methods do not capture enough information about

graph topology and structure. The focus of this work is to augment simple graph

representations with structure information, allowing the use of fast kernel func-

tions while recognizing important topological similarities. This thesis draws from

several studies: incorporating structure features graphs into kernel functions [45],

extensions for approximate matching of such structure features [42], set-based

matching kernels with structure features [43], and an application of wavelets for

1

simplified topology comparison in graph kernels [44].

Graph classification is important for a variety of reasons. Graphs are ubiqui-

tous models that have been applied in many scientific, engineering, and business

fields. For example, in finance data analysis, graphs are used to model dynamic

stock price changes [22]. To analyze biological data, graphs have been utilized in

modeling chemical structures [45], protein sequences [54], protein structures [16],

and gene regulation networks [19]. In web page classification, graphs are used to

model the referencing relationship in HTML documents [62].

Of particular importance are chemical activity prediction studies. Here the

goal is, given a chemical graph, to predict whether or not it will display some

biological activity of interest. The development of accurate models for chemical

activity prediction has a range of applications. They are especially useful in the

screening of potential drug candidates, currently a difficult and expensive process

that can benefit enormously from accurate computational methods. These models

have proved difficult to design, due to the complex nature of most biological clas-

sification problems. For example, the toxicity of a particular chemical compound

is determined by a large variety of factors, as there are innumerable ways that

a foreign chemical might interfere with an organism, and the situation is further

complicated by the possibility that a benign chemical may be broken down into

toxic metabolites in the body. Clearly, there is no single set of chemical features

that can be easily applied to to all problems in all situations, and therefore the

ability to isolate problem-specific chemical features from broader data collections

is a critical issue.

Graph classification for chemical activity prediction must also be computa-

tionally efficient. The fast accumulation of data describing chemical compound

2

structures and biological activity calls for the development of efficient informatics

tools. Cheminformatics is a rapidly emerging research discipline that employs a

wide array of statistical, data mining, and machine learning techniques with the

goal of establishing robust relationships between chemical structures and their

biological properties. Cheminformatics hence is an important component on the

application side of applying informatics approach to life science problems. It

has a broad range of applications in chemistry and biology; arguably the most

commonly known roles are in the area of drug discovery where cheminformatics

tools play a central role in the analysis and interpretation of structure-activity

data collected by various means of modern high throughput screening technology.

Traditionally the analysis of large chemical structure-activity databases was done

only within pharmaceutical companies and up until recently the academic com-

munity has had only limited access to such databases. This situation, however,

has changed dramatically in very recent years.

In 2002, the National Cancer Institute created the Initiative for Chemical Ge-

netics (ICG) with the goal of offering to the academic research community a large

database of chemicals with their roles in cancer research [49]. Two years later, the

National Health Institute (NIH) launched a Molecular Libraries Initiative (MLI)

that included the formation of the national Molecular Library Screening Centers

Network (MLSCN). MLSCN is a consortium of 10 high-throughput screening cen-

ters for screening large chemical libraries [2]. Collectively, ICG and MLSCN aim

to offer to the academic research community the results of testing about a million

compounds against hundreds of biological targets. To organize this data and to

provide public access to the results, the PubChem database and the Chembank

database have been developed as the central repository for chemical structure-

3

activity data. These databases currently contain more than 18 million chemical

compound records, more than 1000 bioassay results, and links from chemicals to

bioassay description, literature, references, and assay data for each entry.

These publicly-available large-scale chemical compound databases have offered

tremendous opportunities for designing highly efficient computational drug design

methods.

Many machine learning and data mining algorithms have been applied to study

the structure-activity relationship of chemicals. For example, Xue et al. reported

promising results of applying five different machine learning algorithms: logistic

regression, C4.5 decision tree, k-nearest neighbor, probabilistic neural network,

and support vector machines to predicting the toxicity of chemicals against an

organism of Tetrahymena pyriformis [57]. Advanced techniques, such as random

forest and MARS (Multivariate Adaptive Regression Splines) have also been ap-

plied to cheminformatics applications [39,47].

Additionally, development of computational and statistical frameworks for an-

alyzing graph data has attracted significant research attention in the data mining

community. In the past a few years, various graph pattern mining algorithms have

been designed [15,17,46,50,58,61]. There are also many research efforts dedicated

to efficiently searching graph databases [25,41,55,59].

It is clear that graph classification is an important area of study. In many

existing classification algorithms [3], samples and their target values are organized

into an object-feature matrix X = (xi,j) where each row in the matrix represents

a sample and each column represents a measurement (or a feature) of the sample.

Graphs are among a group of objects called semi-structured data that cannot

easily conform to a matrix representation. Other examples in the group include

4

sequences, cycles, and trees. Though many different features have been proposed

for graph data (e.g. paths, cycles, and subgraphs), there is no universally accepted

way to define graph features.

Besides choosing the right feature representation, computational efficiency is

also a serious concern in analyzing graph data. Many graph related operations,

such as subgraph matching, clique identification, and hamiltonian cycle discovery

are NP-hard problems. For those that are not NP-hard problems, e.g. all-by-all

shortest distance, the computational cost could be prohibitive for large graphs.

Recently Support Vector Machines (SVM) have gained popularity in drug

design and cheminformatics. A key insight of SVM is the utilization of kernel

functions (i.e. inner product of two points in a Hilbert Space) to transform a non-

linear classification problem into a linear one. Design of a good kernel function

for graphs is therefore a critical issue. The initial effort to define kernels for semi-

structured data was done by Haussler in his work on the R-convolution kernel,

which provided a framework which many current graph kernel functions follow

[13].

Traditional approaches to graph and chemical similarity have a variety of limi-

tations. Methods for chemical activity prediction rely on the comparison of graphs

using a variety of molecular attributes known a priori to be involved in the ac-

tivity of interest. Such methods are problem-specific, however, and provide little

assistance when the relevant descriptors are not known in advance. Additionally,

these methods lack the ability to provide explanatory information regarding what

structural features contribute to the observed chemical activity.

Current work on kernel functions is limited by similar issues stemming from the

high complexity of graph objects. The use of complex structures such as general

5

subgraphs in comparing objects gives kernel functions more expressive power,

but the computational cost of such detailed comparison renders these methods

intractable for the large databases that are now available for analysis. Using

simpler graph features such as sets and sequences can significantly reduce the

computational burden, but at the price of model depth and power. The tradeoff

is clear, and while the groundwork for many classes of graph kernel functions

has been laid, there is still no satisfactory middle ground that combines high

discriminative ability with fast computation speed.

The work presented in this thesis explores some graph kernel functions that

improve on existing methods with respect to both classification accuracy and

kernel computation time. The following key insights are explored. First, problem

relevant structure features can be used to annotate graph vertices in an alignment-

based kernel function, raising model accuracy and adding explanatory capability

[45]. Second, extensions for matching approximate structure features [42], as

well as a faster, simpler kernel function [43] lead to gains in accuracy as well as

faster computation time. Finally, wavelet functions can be applied to graphs in

order to summarize feature information in local graph topology, greatly reducing

the kernel computation time [44]. These methods are validated using a series

a chemical structure-activity data sets, such as prediction of protein-chemical

binding affinity, toxicity, and intestinal absorption.

This remainder of the text is organized as follows. Chapter 2 introduces a

variety of background material regarding graphs, chemicals, graph pattern mining,

kernel functions, and wavelets. In Chapter 3 the previous related work in graph

classification and kernel functions is reviewed. The next four chapters, 4 though 7,

describe the algorithmic details of this work’s contributions to graph classification

6

and kernel functions, and analyze their merits in experimental studies. Some of

the material in these chapters is duplicated, but was included, despite redundancy,

to facilitate ease of reading. Finally, Chapter 8 discusses the overall conclusions

and insights gained from this work, as well as possible future work.

7

Chapter 2

Background

Before proceeding to algorithmic details, this chapter presents some general

background material from a variety of directions. The work of this thesis draws

from techniques in data mining as well as machine learning and chemical property

prediction. This chapter will address the following topics: chemical structures as

graphs, graph classification, kernel functions, graph mining, and wavelet analysis

for graphs.

2.1 Chemical Structure

Chemical compounds are organic molecules that are easily modeled by a graph

representation. In this approach, nodes in a graph model atoms in a chemical

structure and edges in the graph to model chemical bonds in the chemical struc-

ture. In this representation, nodes are labeled with the atom element type, and

edges are labeled with the bond type (single, double, and aromatic bond). The

edges in the graph are undirected, since there is no directionality associated with

chemical bonds. Figure 2.1 shows an example chemical structure, where unlabeled

8

Figure 2.1. An example chemical structure.

vertices are assumed to be carbon (C).

Figure 2.1 shows three sample chemical structures on the left, and their graph

representation on the right.

Figure 2.2. Graph representations of chemicals.

9

2.2 Graph Classification

Many classifiers exist for classification of objects as feature vectors. The feature

vector embeds objects as points in a space where the data is modeled. Recently an

important linear classifier has gained a great deal of attention, the Support Vector

Machine (SVM). It is not only fast to train with great model generalization power,

but it is also a kernel classifier giving it additional advantages over establish vector

space classifiers. These issues will be addressed in the following section on kernel

functions.

SVM builds a classification model by finding a linear hyperplane that best

separates the classes of data objects. The optimal separating hyperplane (OSH)

is chosen by maximizing the margin between the the hyperplane and the nearest

data points (termed support vectors).

When data are not linearly separable, called the soft-margin case, the SVM

finds a hyperplane that optimizes an additional constraint. Often this constraint

is a penalty for misclassified samples expressed in various ways.

The problem of finding an OSH is formulated as a convex optimization prob-

lem and hence can leverage very powerful algorithms for finding exactly finding

the OSH. Once a OSH has been found, classification of additional objects is easily

determined by finding which side of the hyperplane the object resides on. The effi-

ciency of these operations makes SVM an extremely fast classifier. Since the SVM

model ideally depends only on a small number of support vectors it generalizes

well and is compact to store.

Crucially, the SVM problem can be formulated such that it represents objects

using only the dot products between their vectors. This modification allows the

dot products to be replaced with a kernel function between objects, the use of

10

which is discussed further in the follow section.

2.3 Kernel Functions

A kernel function K is a mapping between a pair of graphs into a real number,

K : GxG → R. This function defines an inner product between two graphs and

must satisfy the following properties.

• Positive semi-definite.
∑

i

∑
j K(gi, gj)cicj ≥ 0,∀g ∈ G,∀c ∈ R.

• Symmetric. K(gi, gj) = K(gj, gi),∀g ∈ G.

Such a function embeds graphs or any other objects into a Hilbert space, and

is termed a Mercer kernel from Mercer’s theorem.

Kernel functions can enhance classification in two ways: first, by mapping

vector objects into higher dimensional spaces; second, by embedding non-vector

objects in an implicitly defined space. The advantages of mapping objects into a

higher dimensional space, the so called kernel trick are apparent in a variety of

cases where objects are not separable by a linear decision boundary.

This implicit embedding is not only only useful for non-linear mappings, but

also serves to decouple the object representation from the spatial embedding. A

kernel function need only be defined between data objects in order to apply SVM

classification. Therefore SVM can be used for classification of graph objects by

defining a kernel function between graphs, without explicitly defining any set of

graph features.

11

2.4 Graph Database Mining

This section discusses a few important definitions for graph database mining:

labeled graphs, subgraph isomorphic relation, and graph classification.

Definition 2.4.1 A labeled graph G is a quadruple G = (V, E, Σ, λ) where V

is a set of vertices or nodes and E ⊆ V ×V is a set of undirected edges. Σ is a set

of (disjoint) vertex and edge labels, and λ: V ∪ E → Σ is a function that assigns

labels to vertices and edges. Assume that a total ordering is defined on the labels

in Σ.

A graph database is a set of labeled graphs.

Definition 2.4.2 A graph G′ = (V ′, E ′, Σ′, λ′) is subgraph isomorphic to G =

(V, E, Σ, λ), denoted by G′ ⊆ G, if there exists a 1-1 mapping f : V ′ → V such

that

• ∀v ∈ V ′, λ′(v) = λ(f(v))

• ∀(u, v) ∈ E ′, (f(u), f(v)) ∈ E, and

• ∀(u, v) ∈ E ′, λ′(u, v) = λ(f(u), f(v))

.

The function f is a subgraph isomorphism from graph G′ to graph G. It is

said G′ occurs in G if G′ ⊆ G. Given a subgraph isomorphism f , the image of the

domain V ′ (f(V ′)) is an embedding of G′ in G.

Example 2.4.1 Figure 2.3 shows a graph database of three labeled graphs. The

mapping (isomorphism) q1 → p3, q2 → p1, and q3 → p2 demonstrates that graph

12

(1) Graph P

a b

b

b

x

y

y

x

y

p1

p3

p2

p4

a

b

b

x

y

q2

q1

q3

(2) Graph Q

b

b

b

y

y

y
s2

s3

s1

(3) Graph S

Figure 2.3. A Database of three labeled graphs.

Q is subgraph isomorphic to P and hence Q occurs in P . Set {p1, p2, p3} is an

embedding of Q in P . Similarly, graph S occurs in graph P but not Q.

Problem Statement: Given a graph space G∗, a set of n graphs sampled from

G∗ and the related target values of these graphs D = {(Gi, Ti,)}n
i=1, the graph

classification problem is to estimate a function F : G∗ → T that accurately

map graphs to their target value.

By classification all target values are assumed to be discrete values, otherwise

it is a regression problem. Below, several algorithms are reviewed for graph classi-

fication that work within a common framework called a kernel function. The term

kernel function refers to an operation of computing the inner product between two

points in a Hilbert space. Kernel functions are widely used in classification of data

in a high dimensional feature space.

2.5 Wavelet Analysis for Graphs

Wavelet functions are commonly used as a means for decomposing and repre-

senting a function or signal as its constituent parts, across various resolutions or

scales. Wavelets are usually applied to numerically valued data such as communi-

13

cation signals or mathematical functions, as well as to some regularly structured

numeric data such as matrices and images.

Graphs, however, are arbitrarily structured and may represent many relation-

ships and topologies between data elements. Recent work has established the

successful application of wavelet functions to graphs for multi-resolution analy-

sis [5]. The use of wavelets in this capacity is different than the use of wavelets

for signal and image compression such as in [32]. The complex graph topology

must be projected into a Euclidean space, and wavelets are used to summarize

the information in the local topology around graph nodes.

Given a vertex v in graph G, define the h-hop neighbors of v as the set of other

nodes in G whose shortest path to v is h nodes. The sets of h-hop neighbors then

lead to the notion of hop distance which suitably projects the nodes of a graph

into Euclidean space.

Wavelets are then used to summarize feature information in the local topology

around vertices in a graph. Since regions near the origin in a wavelet function

a strongly positive, while the regions farther away are strongly negative, with

distant regions neutral, using a wavelet function to compute a weighted sum over

vertex features arranged according to hop distance corresponds to a comparison

of vertex features in the local neighborhood to those in the distant neighborhood.

14

Chapter 3

Related Works

Given that graphs are such powerful and interesting structures, their classi-

fication has been extensively studied. This chapter will review the related work

covering pattern mining, kernel functions, and wavelets for graph analysis.

This section surveys work related to graph classification methods by dividing

them into two categories. The first category of methods explicitly collect a set

of features from the graphs. The possible features include both structural and

chemical. Structural features are graph fragments of different types. Examples

are paths, cycles, trees, and general subgraphs [60]. Chemical descriptors, as they

are called in QSAR work, are properties describing a molecule overall such as

weight, charge.

Once a set of features is determined, a graph is described by a feature vector,

and any existing classification methods such as CBA [3] and decision tree [38] that

work in an n-dimensional Euclidian space, may be applied for graph classification.

The second approach to classification is to implicitly collect a (possibly infinite)

set of features from graphs. Rather than computing the features, this approach

computes the similarity of graphs, using the framework of kernel functions [51].

15

The advantage of a kernel method is that it has a lower chance of over fitting,

which is a serious concern in high dimensional space with low sample size.

The following sections summarize recent work related to pattern mining and

structural features, as well as vector-based classification , kernel functions for

classification, and wavelets for graphs.

3.1 Pattern Mining

Algorithms that search for frequent patterns (e.g. trees, paths, cyclic graphs)

in graphs can be roughly divided into three groups.

The first group uses a level-wise search strategy, including AGM [20] and

FSG [28]. The second category takes a depth-first search strategy, including gSpan

[58] and FFSM [21]. Different from level-wise search algorithms AGM and FSG,

the depth-first search strategy utilizes a back-track algorithm to mine frequent

subgraphs. The advantage of a depth-first search is a better memory utilization

since depth-first search keeps one frequent subgraph in memory and enumerates

its supergraphs, in contrast to keeping all k-edge frequent subgraph in memory.

The third category of frequent subgraph mining algorithms does not work

directly on a graph space to identify frequent patterns. Instead, algorithms in

this category first project a graph space to another space such as that of trees,

then identify frequent patterns in the projected space, and finally reconstruct all

frequent patterns in the graph space. This strategy is called progressive mining.

Algorithms in this category includes SPIN [18] and GASTON [34].

16

3.1.1 Frequent Subgraphs

Frequent subgraph mining is a technique used to enumerate graph substruc-

tures that occur in a graph database with at least some specified frequency. This

minimum frequency threshold is termed the support threshold by the data mining

community. After limiting returned subgraphs by frequency, types found can be

further constrained by setting upper and lower limits on the number of vertices

they can contain. In much the work of this thesis, the FFSM algorithm [17] is

used for fast computation of frequent subgraphs. Figure 3.1.1, adopted from [17],

shows an example of this frequent subgraph enumeration. Some work has been

done by Deshpande et al. [7] toward the use of these frequent substructures in the

classification of chemical compounds with promising results.

Figure 3.1. Example graphs and frequent subgraphs (support =
2/3).

17

3.1.2 Chemical Properties and Target Prediction

A target property of the chemical compound is a measurable quantity of the

compound. There are two categories of target properties: continuous (e.g., binding

affinities to a protein) and discrete target properties (e.g. active compounds vs.

inactive compounds).

The relationship between a chemical compound and its target property is typ-

ically investigated through a quantitative structure-property relationship (QSPR)

1. Abstractly, any QSPR method may be generally defined as a function that maps

a chemical space to a property space in the form of

P = k̂(D) (3.1)

where D is a chemical structure, P is a property, and the function k̂ is an estimated

mapping from a chemical space to a property space.

Different QSPR methodologies can be understood in terms of the types of

target property values (continuous or discrete), types of features, and algorithms

that map descriptors to target properties.

3.2 Vector-based Classification

Several classification algorithms based on explicitly collected features exist for

graph classification in a variety of applications. What follows is a brief survey of

popular methods for some pertinent applications

Recent methods applied to QSAR and chemical activity prediction include

Decision Trees, Classification based on association [3], and Random Forest among

1Such study also known as a quantitative structure-activity relationship (QSAR) but property
refers to a broader range of applications than activity.

18

many others. Decision trees use a collection of simple learners organized in a

hierarchical tree structure to classify a object. Non-leaf nodes makes decisions

about an object based on one of it’s properties and send it to one of the children.

Leaf nodes of the tree correspond to classification categories. Random forest uses

a collection of randomly generated decision trees and typically classify an object

according to the mode of the classes returned by all trees.

Classification based on association (CBA) is somewhat different than these

other methods. CBA seeks to find a set of association rules of the form A → ci,

where A is some set of properties and ci is a class label. XRules [60] is similar

to CBA and utilizes frequent tree-patterns to build a rule based classifier for

XML data. Specifically, XRules first identifies a set of frequent tree-patterns.

An association rule: G → ci is then formed where G is a tree pattern and ci is

a class label. The confidence of the rule is the conditional probability p(ci|G)

estimated from the training data. XRules carefully selects a subset of rules with

high confidence values and uses those rules for classification.

Graph boosting [27] also utilizes substructures toward graph classification.

Similar to XRules, graph boosting uses rules with the format of G → ci. Different

from XRules, it uses the boosting technique to assign weights to different rules.

The final classification result is computed as the weighted majority.

3.3 Kernel Functions for Graph Classification

The term kernel function refers to an operation for computing the inner prod-

uct between two vectors in a feature space, thus avoiding the explicit compu-

tation of coordinates in that feature space. Graph kernel functions are simply

kernel functions that have been defined to compute the similarity between two

19

graph structures. In recent years a variety of graph kernel functions have been

developed, with promising results as described by Ralaivola et al [29].

Graph kernel functions can be roughly divided into two categories. The first

group of kernel functions consider the full adjacency matrix of graphs and hence

measure the global similarity of two graphs. These include product graph kernels

[12], random walk based kernels [24], and kernels based on shortest paths between

pair of nodes [26]. The second group of kernel functions try to capture the local

similarity of two graphs by counting the shared subcomponents of graphs. These

include the subtree kernels [40], cyclic kernels [48], spectrum kernel [7]. This

section reviews the relevant work on these kernel functions.

Product graph kernels use a feature space of all possible node label sequences

for walks in graphs. Since the number of possible walks are infinite, there is no

way to enumerate all the features in kernel computation [12]. Instead, a product

graph is computed in order to make the kernel function computation feasible.

Rather than computing the shared paths exactly, which has prohibitive com-

putational cost for large graphs, the work of Kashima et al. [24] is based on the

use of shared random label sequences in the computation of graph kernels. Their

marginalized graph kernel uses a Markov model to randomly generate walks of a

labeled graph. The random walks are created using a transition probability ma-

trix combined with a walk termination probability. These collections of random

walks are then compared and the number of shared sequences is used to determine

the overall similarity between two molecules.

Spectrum kernels aim to simplify the aforementioned kernels by working in a

finite dimensional feature space based on a set of subgraphs (or as special cases,

trees, cycles, and paths). The kernel function is computed as the inner product

20

between two feature vectors, such as counts of subgraph occurrences as in [7].

Transformations of the inner product, such as min-max kernel [52] and Tanimoto

kernel [29], are also widely used. The subtree kernel [33] is a variation on the

spectrum kernel that uses subtrees instead of paths.

The optimal assignment kernel, described by Frölich et al [10], differs signifi-

cantly from the marginalized graph kernel. This kernel function first computes the

similarity between all vertices in one graph and all vertices in another. The simi-

larity between the two graphs is then computed by finding the maximal weighted

bipartite graph between the two sets of vertices, called the optimal assignment.

The authors investigate an extension of this method whereby certain structure

patterns defined a priori by expert knowledge, are collapsed into single vertices,

and this reduced graph is used as input to the optimal assignment kernel.

3.4 Wavelets Functions for Graphs

Crovella et al. [5] have developed a multi-scale method for network traffic

data analysis. For this application, they are attempting to determine the scale at

which certain traffic phenomena occur. They represent traffic networks as graphs

labeled with some measurement such as bytes carried per unit time. In their

method, they use the hop distance between vertices in a graph, defined as the

length of the shortest path between them, and apply a weighted average function

to compute the difference between the average of measurements close to a vertex

and measurements that are far, up to a certain distance. This process produces

a new measurement for a specific vertex that captures and condenses information

about the vertex neighborhood. Figure 3 shows a diagram of wavelet function

weights overlayed on a chemical structure.

21

Maggioni et al. [32] demonstrate a general-purpose biorthogonal wavelet for

graph analysis. In their method, they use the dyadic powers of an diffusion oper-

ator to induce a multiresolution analysis. While their method applies to a large

class of spaces, such as manifolds and graphs, the applicability of their method to

attributed chemical structures is not clear. The major technical difficulty is how

to incorporate node labels in a multiresolution analysis.

22

Chapter 4

Alignment Kernels with

Pattern-based Features

Traditional approaches to graph similarity rely on the comparison of com-

pounds using a variety of molecular attributes known a priori to be involved in

the activity of interest. Such methods are problem-specific, however, and pro-

vide little assistance when the relevant descriptors are not known in advance.

Additionally, these methods lack the ability to provide explanatory information

regarding what structural features contribute to the observed chemical activity.

The method proposed here, referred to as OAPD for Optimal-Assignment with

Pattern-based Descriptors, alleviates both of these issues through the mining and

analysis of structural patterns present in the data in order to identify highly dis-

criminating patterns, which then augment a graph kernel function that computes

molecular similarity.

23

4.1 Structure-based Pattern Mining For Chemical

Compound Classification

The following sections outline the algorithm that drives the experimental

method. In short, it measures the similarity of graph structures whose vertices

and edges have been labeled with various descriptors. These descriptors represent

physical and chemical information such as atom and bond types. They are also

used to represent the membership of atoms in specific structure patterns that

have been mined from the data. To compute the similarity of two graphs, the

vertices of one graph are aligned with the vertices of the second graph, such that

the total overall similarity is maximized with respect to all possible alignments.

Vertex similarity is measured by comparing vertex descriptors, and is computed

recursively so that when comparing two vertices, it also compares the neighbors

of those vertices, and their neighbors, etc.

4.1.1 Structure Pattern Mining

The frequent subgraph mining problem can be phrased as such: given a set of

labeled graphs, the support of an arbitrary subgraph is the fraction of all graphs in

the set that contain that subgraph. A subgraph is frequent if its support meets a

certain minimum threshold. The goal is to enumerate all the frequent, connected

subgraphs in a graph database. The extraction of important subgraph patterns

can be controlled by selecting the proper frequency threshold, as well as other

parameters such as size and density of subgraph patterns.

24

4.1.2 Optimal Assignment Kernel

The optimal assignment kernel function computes the similarity between two

graph structures. This similarity computation is accomplished by first represent-

ing the two sets graph vertices as a bipartite graph, and then finding the set of

weighted edges assigning every vertex in one graph to a vertex in the other. The

edge weights are calculated via a recursive vertex similarity function. This section

presents the equations describing this algorithm in detail, as discussed by Frölich

et al [9]. The top-level equation describing the similarity of two molecular graphs

is:

kA(M1,M2) := maxπ

m∑

h=1

knei(vπ(h), vh) (4.1)

Where π denotes a permutation of a subset of graph vertices, and m is the

number of vertices in the smaller graph. This is needed to assign all vertices of the

smaller graph to vertices in the large graph. The knei function, which calculates

the similarity between two vertices using their local neighbors, is given as follows:

knei(v1, v2) := kv(v1, v2) + R0(v1, v2) + Snei(v1, v2) (4.2)

Snei(v1, v2) :=
L∑

l=1

γ(l)Rl(v1, v2) (4.3)

The functions kv and ke compute the similarity between vertices (atoms) and

edges (bonds), respectively. These functions could take a variety of forms, but in

the OA kernel they are RBF functions between vectors of vertex/edge labels.

The γ(l) term is a decay parameter that weights the similarity of neighbors

according to their distance from the original vertex. The l parameter controls

25

the topological distance within which to consider neighbors of vertices. The Rl

equation, which recursively computes the similarity between two specific vertices

is given by the following equation:

Rl(v1, v2) =
1

|v1||v2|
∑
i,j

Rl−1(ni(v1), nj(v2)) (4.4)

Where |v| is the number of neighbors of vertex v, and nk(v) is the set of

neighbors of v. The base case for this equation is R0, defined by:

R0(v1, v2) :=
1

|v1| maxπ

|v2|∑
i=1

(kv(a, b)|ke(x, y)) (4.5)

a = nπ(i)(v1), b = ni(v2) (4.6)

x = v1 → nπ(i)(v1), y = v2 → ni(v2) (4.7)

The notation v → ni(v) refers to the edge connecting vertex v with the ith

neighboring vertex. The functions kv and ke are used to compare vertex and edge

descriptors, by counting the total number of descriptor matches.

4.1.3 Reduced Graph Representation

One way in which to utilize the structure patterns that are mined from the

graph data is to collapse the specific subgraphs into single vertices in the original

graph. This technique is explored by Frölich et al. [10] with moderate results,

although they use predefined structure patterns, so called pharmacophores, iden-

tified a priori with the help of expert knowledge. The method proposed here

ushers these predefined patterns in favor of the structure patterns generated via

frequent subgraph mining.

26

The use of a reduced graph representation does have some advantages. First,

by collapsing substructures, an entire set of vertices can be compared at once,

reducing the graph complexity and marginally decreasing computation time. Sec-

ond, by changing the substructure size the resolution at which graph structures

are compared can be adjusted. The disadvantage of a reduced graph representa-

tion is that substructures can only be compared directly to other substructures,

and cannot align partial structure matches. As utilized in Frölich et al., this is

not as much of a burden since they have defined the best patterns a priori using

expert knowledge. In the case of the method presented here, however, this is a

significant downside, as there is no a priori knowledge to guide pattern generation

and we wish to retain as much structural information as possible.

4.1.4 Pattern-based Descriptors

The loss of partial substructure alignment following the use of a reduced graph

representation motivated us to find another way of integrating this pattern-based

information. Instead of collapsing graph substructures, vertices are simply anno-

tated with additional descriptor labels indicating the vertex’s membership in the

structure patterns that were previously mined. These pattern-based descriptors

are calculated for each vertex and are used by the optimal assignment kernel in

the same way that other vertex descriptors are handled. In this way substructure

information can be captured in the graph vertices without needing to alter the

original graph structure.

27

4.2 Experimental Study

Classification experiments were conducted on five different biological activ-

ity data sets, and measured support vector machine (SVM) classifier prediction

accuracy for several different feature generation methods. The data sets and clas-

sification methods are described in more detail in the following subsections, along

with the associated results. Figure 4.1 gives a graphical overview of the process.

Figure 4.1. Experimental workflow for a cross-validation trial with
frequent subgraph mining.

All of the experiments were performed on a desktop computer with a 3Ghz

Pentium 4 processor and 1 GB of RAM. Generating a set of frequent subgraphs

is very quick, generally a few seconds. Optimal assignment requires significantly

more computation time, but not intractable, at less than half an hour for the

largest data set.

28

4.2.1 Data Sets

Five data sets used in various problem areas were selected to evaluate classifier

performance. The Predictive Toxicology Challenge data set, discussed by Helma

et al [14], contains a set of chemical compounds classified according to their toxi-

city in male rats (PTC-MR), female rats (PTC-FR), male mice (PTC-MM), and

female mice (PTC-FM). The Human Intestinal Absorption (HIA) data set (Wes-

sel et al. [53]) contains chemical compounds classified by intestinal absorption

activity. Also included were two different virtual screening data sets (VS-1,VS-2)

used to predict various binding inhibitors from Fontaine et al. [8] and Jorissen

et al [23]. The final data set (MD) is from Patterson et al [35], and was used to

validate certain molecule descriptors. Various statistics for these data sets can be

found in Table 4.1.

Table 4.1. Data set statistics for OAPD experiments.

29

4.2.2 Methods

The performance of the SVM classifier was evaluated by training with several

different feature sets. The first set of features (FSM) consists only of frequent

subgraphs. Those subgraphs are mined using the FFSM software [17] with min-

imum subgraph frequency of 50%. Each chemical compound is represented by a

binary vector with length equal to the number of mined subgraphs. Each sub-

graph is mapped to a specific vector index, and if a chemical compound contains

a subgraph then the bit at the corresponding index is set to one, otherwise it is

set to zero.

The second feature set (OA) consists of the similarity values computed by

the optimal assignment kernel, as proposed by Frölich et al. Each compound is

represented as a real-valued vector containing the computed similarity between it

and all other molecules in the data set.

The third feature set (OARG) is computed using the optimal assignment ker-

nel as well, except that the frequent subgraph patterns are embedded as a re-

duced graph representation before computing the optimal assignment. The re-

duced graph representation is described by Frölich et al. as well, but they use a

priori patterns instead of frequently mined ones.

Finally, the fourth feature set (OAPD) also consists of the subgraph patterns

combined with the optimal assignment kernel, however in this case a reduced

graph is not derived, and instead annotate vertices in a graph with additional

descriptors indicating its membership in specific subgraph patterns.

In the experiments, support vector machine (SVM) classifier was used in order

to generate activity predictions. The use of SVM has recently become quite popu-

lar for a variety of biological machine learning applications because of its efficiency

30

and ability to operate on high-dimensional data sets. The SMO SVM classifier was

used, implemented by Platt [37] and included in the Weka data-mining software

package by Witten et al [56]. The SVM parameters were fixed, with a linear kernel

and C = 1. Classifier performance was averaged over a ten-fold cross-validation

set.

Some feature selection was performed in order to identify the most discrimi-

nating frequent patterns. Using a simple statistical formula, known as the Pearson

correlation coefficient (PCC), the correlation between a set of feature samples (in

this case, the occurrences of a particular subgraph in each of the data samples)

and the corresponding class labels was measured. Frequent patterns are ranked

according to correlation strength, and the top patterns are selected.

4.2.3 Results

Table 4.2 contains results reporting the average and standard deviation of

the prediction accuracy over the 10 cross-validation trials. From the table, the

following observations can be made.

Table 4.2. Average and standard deviation of 10-fold cross-
validation accuracy for OAPD experiments.

First, notice that OAPD (and OARG) outperforms FSM methods in all of

31

the tried data sets except one (FSM is better than OARG on the PTC-MR data

set). This results indicate that use of frequent subgraphs alone without using

the optimal alignment kernel, does not produce a good classifier. Although the

conclusion is generally true, interestingly, for the PTC-MR data set, the FSM

method outperforms both the OA and OARG methods, while the OAPD method

outperforms FSM. This seems to suggest that important information is encoded

in the frequent subgraphs, and is being lost in the OARG, but is still preserved

in the OAPD method.

Second, notice that OAPD (or OARG) method outperforms the original OA

method in 5 of the tried 8 data sets: HIA, MD, PTC-FR, PTC-MM, PTC-MR.

OAPD has a very close performance to that of OA in the rest of the three data sets.

The results indicate that the OAPD method provides good performance for diverse

data sets which involve tasks such as predicting chemical’s toxicology, predicting

human intestinal absorption of chemicals, and virtual screening of drugs.

Table 4.3. SMARTS string of highly ranked chemical patterns from
OAPD method.

32

In addition to outperforming the previous methods, this method also reports

the specific subgraph patterns that were mined from the training data and used

to augment the optimal assignment kernel function. By identifying highly dis-

criminative patterns, this method can offer additional insight into the structural

features that contribute to a compound’s chemical function. Table 4.3 contains

the five highest ranked (using Pearson correlation coefficient) subgraph patterns

for each data set, expressed as SMARTS strings that encode the specific pattern.

Many of the patterns in all sets denote various carbon chains (C(CC)C, C=CC,

etc.), however there seem to be some unique patterns as well. The MD data set

contains carbon chain patterns with some sulfur atoms mixed in, while the VS-1

data set has carbon chains with nitrogen mixed in. The [NH2+] and [NH3+]

patterns appear to be important in the VS-2 data set, as well as some of the PTC

data sets.

4.3 Conclusions

Graph structures are a powerful and expressive representation for chemical

compounds. This work presents a new method, termed OAPD, for computing

the similarity of chemical compounds, based on the use of an optimal assignment

graph kernel function augmented with pattern-based descriptors that have been

mined from a set of molecular graphs. Experimental studies demonstrate that

the OAPD method integrates the structural alignment capabilities of the existing

optimal alignment kernel method with the substructure discovery capabilities of

the frequent subgraph mining method and delivers better performance in most of

the tried benchmarks. In the future, it may be possible to involve domain experts

to evaluate the performance of this algorithm, including the prediction accuracy

33

and the capability of identifying structure important features, in diverse chemical

structure data sets.

34

Chapter 5

Alignment Kernels with

Approximate Pattern Features

The work presented in this chapter aims to leverage existing frequent pat-

tern mining algorithms and explore the application of kernel classifiers in build-

ing highly accurate graph classification algorithms. Towards that end, a novel

technique is demonstrated called graph pattern diffusion kernel (GPD). In this

method, all frequent patterns are first identified from a graph database. Then

subgraphs are mapped to graphs in the graph database and nodes of graphs are

projected to a high dimensional space with a specially designed function. Finally

a novel graph alignment algorithm is used to compute the inner product of two

graphs. This algorithm is tested using a number of chemical structure data sets.

The experimental results demonstrate that this method is significantly better than

competing methods such as those based on paths, cycles, and other subgraphs.

35

5.1 GPD: A Graph Pattern Diffusion Kernel for Accurate

Graph Classification

Here the design of the pattern diffusion kernel is presented. The section begins

by first presenting a general framework. It is proved, through a reduction to

the subgraph isomorphism problem, that the computational cost of the general

framework can be prohibitive for large graphs. The pattern based graph alignment

kernel is then presented. Finally a technique is shown called “pattern diffusion”

that can significantly improve graph classification accuracy in practice.

5.1.1 Graph Similarity Measurement with Alignment

An alignment of two graphs G and G′ (assuming |V [G]| ≤ |V [G′]|) is a 1-1

mapping π : V [G] → V [G′]. Given an alignment π, define the similarity between

two graphs, as measured by a kernel function kA, below:

kA(G,G′) = max
π

∑
v

kn(v, π(v)) +
∑
u,v

ke((u, v), (π(u), π(v))) (5.1)

The function kn is a kernel function to measure the similarity of node labels

and the function ke is a kernel function to measure the similarity of edge labels.

Equation 5.1 uses an additive model to compute the similarity between two graphs.

The maximal similarity among all possible mappings is defined as the similarity

between two graphs.

5.1.2 NP-hardness of Graph Alignment Kernel Function

It is no surprise that computing the graph alignment kernel is an NP-hard

problem. It is proved this with a reduction from the graph alignment kernel

36

to the subgraph isomorphism problem. In the following paragraphs, assuming

there exists an efficient solver of the graph alignment kernel problem, it is shown

that the same solver can be used to solve the subgraph isomorphism problem

efficiently. Since the subgraph isomorphism problem is an NP-hard problem, with

the reduction mentioned before, it is proved that the graph alignment kernel

problem is therefore an NP-hard problem as well. Note: this subsection is a

stand-alone component of this work, and readers who choose to skip this section

should encounter no difficulty in reading the rest of the text.

Given two graphs G and G′ (for simplicity, assume nodes and edges in G and

G′ are not labeled as usually studied in the subgraph isomorphism problem), use

a node kernel function that returns a constant 0. Define an edge kernel function

ke : V [G]× V [G]× V [G′]× V [G′] → R as

ke((u, v), (u′, v′)) =

1 if (u, v) ∈ E[G] and (u′, v′) ∈ E[G′]

0 otherwise

With the constant node function and the specialized edge function, the kernel

function of two graphs is simplified to the following format:

kA(G,G′) = max
π

∑
u,v

ke((u, v), (π(u), π(v))) (5.2)

The NP-hardness of the graph alignment kernel is established with the follow-

ing theorem.

Theorem 5.1.1 Given two (unlabeled) graphs G and G′ and the edge kernel

function ke defined previously, G is subgraph isomorphic to G′ if and only if

Ka(G,G′) = |E[G]|

37

Proof 5.1.1 If: notice from the definition of ke that the maximal value of Ka(G,G′)

is |E[G]|. Given Ka(G,G′) = |E[G]|, it is claimed that there exists an alignment

function π : V [G] → V [G′] such that for all (u, v) ∈ E[G], (π(u), π(v)) ∈ E[G′].

The existence of such a function π guarantees that graph G is a subgraph of G′.

Only if: Given G is a subgraph of G′, there is an alignment function π :

V [G] → V [G′] such that for all (u, v) ∈ E[G], (π(u), π(v)) ∈ E[G′]. According to

Equation 5.2, Ka(G,G′) = |E[G]|.

Theorem 5.1.1 shows that the graph alignment kernel problem is no easier than

the subgraph isomorphism problem and hence is at least NP-hard in complexity.

5.1.3 Graph Node Alignment Kernel

To derive an efficient algorithm scalable to large graphs, the idea is that a

function f is used to map nodes in a graph to a high (possibly infinite) dimensional

feature space that captures not only the node label information but also the

neighborhood topological information around the node. If such a function f is

obtained, the graph kernel function may be simplified with the following formula:

kM(G,G′) = max
π

∑

v∈V [G]

kn(f(v), f(π(v))) (5.3)

Where π : V [G] → V [G′] denotes an alignment of graph G and G′. f(v) is a

set of “features” associated with a node.

With this modification, the optimization problem that searches for the best

alignment can be solved in polynomial time. To derive a polynomial running time

algorithm, a weighted complete bipartite graph is constructed by making every

38

node pair (u,v) ∈ V [G] × V [G′] incident on an edge. The weight of the edge

(u,v) is kn(f(v), f(u)). Figure 5.1, shows a weighted complete bipartite graph for

V [G] = {v1, v2, v3} and V [G′] = {u1, u2, u3}. Highlighted edges (v1, u2), (v2, u1),

(v3, u3) have larger weights than the rest of the edges (dashed).

With the bipartite graph, a search for the best alignment becomes a search

for the maximum weighted bipartite subgraph from the complete bipartite graph.

Many network flow based algorithms (e.g. linear programming) can be used to

obtain the maximum weighted bipartite subgraph. The Hungarian algorithm is

used with complexity O(|V [G]|3). For details of the Hungarian algorithm see [1].

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 5.1. A maximum weighted bipartite graph for graph align-
ment.

Applying the Hungarian algorithm to graph alignment was first explored by

[10] for chemical compound classification. In contrast to their algorithm, which

utilized domain knowledge of chemical compounds extensively and developed a

complicated recursive function to compute the similarity between nodes, a new

framework is developed here that maps such nodes to a high dimensional space

in order to measure the similarity between two nodes without assuming any do-

main knowledge. Even in cheminformatics, experiments show that this technique

39

generates similar and sometimes better classification accuracies compared to the

method reported in [10].

Unfortunately, using the Hungarian algorithm for assignment, as used by [10]

is not a true Mercer kernel. Since the kernel function proposed here uses this

algorithm as well, it is also not a Mercer kernel. Like in [10], however, practically

this kernel still performs competitively.

5.1.4 Pattern Diffusion

This section introduces a novel technique “pattern diffusion” to project nodes

in a graph to a high dimensional space that captures both node labeling informa-

tion and local topology information. This design has the following advantages as

a kernel function:

• The design is generic and does not assume any domain knowledge from a

specific application. The diffusion process may be applied to graphs with

dramatically different characteristics.

• The diffusion process is straightforward to implement and can be computed

efficiently.

• It is proved that the diffusion process is related to the probability distribu-

tion of a graph random walk (in Appendix). This explains why the simple

process may be used to summarize local topological information.

Below, the pattern diffusion kernel is outlined in three steps.

In the first step, a seed is identified as a starting point for the diffusion. In

this design, a “seed” could be a single node, or a set of connected nodes in the

original graph. In the experimental study, frequent subgraphs are used for seeds

40

since a seed can easily be compared from one graph to a seed in another graph.

However, there is no requirement that frequent subgraphs must be used.

In the second step given a set of nodes S as seed, recursively define ft in the

following way.

The base f0 is defined as:

f0(u) =

1/|S| if u ∈ S

0 otherwise

Given some time t, define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v)× (1− λ

d(v)
) +

∑

u∈N(v)

ft(u)× λ

d(u)
(5.4)

In the notation, N(v) is the set of nodes that connects to v directly. d(v) is the

node degree of v, or d(v) = |N(v)|. λ is a parameter that controls the diffusion

rate.

The formula 5.4 describes a process where each node distributes a λ fraction

of its value to its neighbors evenly and in the same way receives some value from

its neighbors. Call it “diffusion” because the process simulates the way a value

is spreading in a network. The intuition is that the distribution of such a value

encodes information about the local topology of the network.

To constrain the diffusion process to a local region, one parameter called dif-

fusion time is used, denoted by τ , to control the diffusion process. Specifically the

diffusion process is limited to a local region of the original graph with nodes that

are at most τ hops away from a node in the seed S. For this reason, the diffusion

is referred to as “local diffusion”.

41

Finally, for the seed S, define the mapping function fS as the limit function

of ft as t approaches to infinity, or

fS = lim
t→∞

ft (5.5)

5.1.5 Pattern Diffusion Kernel and Graph Classification

This section summarizes the discussion of kernel functions and shows how

they are utilized to construct an efficient graph classification algorithm at both

the training and testing phases.

5.1.5.1 Training Phase

In the training phase, divide graphs of the training data set D = {(Gi, Ti,)}n
i=1

into groups according to their class labels. For example in binary classification,

there are two groups of graphs: positive or negative. For multi-class classification,

there are multiple groups of graphs where each group contains graphs with the

same class label. The training phase is composed of four steps:

• Obtain frequent subgraphs for seeds. Identify frequent subgraphs from each

graph group and union the subgraph sets together as the seed set S.

• For each seed S ∈ S and for each graph G in the training data set, use

fS to label nodes in G. Thus the feature vector of a node v is a vector

LV = {fSi
(v)}m

i=1 with length m = |S|.

• For two graphs G,G′, construct the complete weighted bipartite graph as

described in section 5.1.3 and compute the kernel Ka(G,G′) using Equation

5.3.

42

• Train a predictive model using a kernel classifier.

5.1.5.2 Testing Phase

In the testing phase, the kernel function is computed for graphs in the testing

and training data sets. The trained model is used to make predictions about

graph in the testing set.

• For each seed S ∈ S and for each graph G in the testing data set, fS is used

to label nodes in G and create feature vectors as done in the training phase.

• Equation 5.3 computes the kernel function Ka(G,G′) for each graph G in

the testing data set and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain prediction accuracy of the

testing data set

The empirical study of different kernel functions, including the pattern diffu-

sion kernel, is presented below.

5.2 Experimental Study

Classification experiments were conducted using ten different biological activ-

ity data sets, and compared cross-validation accuracies for different kernel func-

tions. The following subsections describe the data sets and the classification meth-

ods in more detail along with the associated results.

All of experiments were performed on a desktop computer with a 3Ghz Pertium

4 processor and 1 GB of RAM. Generating a set of frequent subgraphs is efficient,

generally taking a few seconds. Computing alignment kernels somewhat takes

more computation time, typically in the range of a few minutes.

43

In all kernel classification experiments, the LibSVM software [4] was used as the

kernel classifier. The nu-SVC type classifier was used with nu = 0.5, the LibSVM

default. To perform a fair comparison, model selection was not performed, and

the SVM parameters were not tuned to favor any particular method, and default

parameters were used in all cases. The classifiers CBA and Xrule were downloaded

as instructed in the related papers, and default parameters were used for both.

The classification accuracy is computed by averaging over ten trials of a 10-fold

cross-validation experiment. Standard deviation is computed similarly.

5.2.1 Data Sets

Ten data sets were selected covering typical chemical benchmarks in drug

design to evaluate our classification algorithm performance.

The first five data sets are from drug virtual screening experiments taken

from [23]. In this data set, the target values are drugs’ binding affinity to a

particular protein. Five proteins are used to in the data set including: CDK2,

COX2, FXa, PDE5, and A1A where each symbol represents a specific protein.

For each protein, the data provider carefully selected 50 chemical structures that

clearly bind to the protein (“active” ones). The data provider also deliberately

listed chemical structures that are very similar to the active ones (judged with

domain knowledge) but clearly do not bind to the target protein. This list is

known as the “decoy” list. 50 chemical structures were randomly sampled from

the decoy list.

The next data set, from Wessel et al. [53] includes compounds classified by

affinity for absorption through human intestinal lining. More over, the Predictive

Toxicology Challenge [14] data sets were included, which contain a series of chemi-

44

cal compounds classified according to their toxicity in male rats, female rats, male

mice, and female mice.

The same protocol was used as in [17] to transform chemical structure data set

to graphs. Table 5.1 lists the total number of chemical compounds in each data

set, as well as the number of positive and negative samples. In the table, # G:

number of samples (chemical compounds) in the data set. # P: positive samples.

N: negative samples

Table 5.1. Data set and class statistics for GPD experiments.

Dataset # G # P # N
CDK2 inhibitors 100 50 50
COX2 inhibitors 100 50 50
Fxa inhibitors 100 50 50

PDE5 inhibitors 100 50 50
A1A inhibitors 100 50 50

intestinal absorption 310 148 162
toxicity (female mice) 344 152 192
toxicity (female rats) 336 129 207
toxicity (male mice) 351 121 230
toxicity (male rats) 349 143 206

5.2.2 Feature Sets

Frequent patterns were exclusively used from graph representations of chemi-

cals in our study. Such frequent subgraphs were generated from a data set using

two different graph mining approaches: that with exact matching [17] and that of

approximate matching. In the approximate frequent subgraph mining, a pattern

matches with a graph as long as there are up to k > 0 node label mismatches.

For chemical structures typical mismatch tolerance is small, that is k values are

1, 2, etc. In the experiments approximate graph mining with k = 1 was used.

45

Once frequent subgraphs are mined, three feature sets are generated: (i) gen-

eral subgraphs (all of mined subgraphs), (ii) tree subgraphs, and (iii) path sub-

graphs. Cycles were examined as well, not included in this study since typically

less than two cyclic subgraphs were identified in a data set. These feature sets are

used for constructing kernel functions as discussed below.

5.2.3 Classification Methods

The performance of the following classifiers was evaluated.

• CBA. The first is a classifier that uses frequent itemset mining, known as

Classification Based on Association (CBA) [3]. In CBA mined frequent

subgraphs are treated as item sets.

• Graph Convolution Kernels. This type of kernel include the mismatch kernel

(MIS) and the min-max (MNX) kernel. The former is based on the normal-

ized Hamming distance of two binary vectors, and the latter is computed

as the ratio between two sums: the numerator is the sum of the minimum

between each feature pair in two binary vectors, and the denominator is the

same except it sums the maximum. See [52] for details about the min-max

kernel.

• SVM built-in Kernels. A linear kernel (Linear) and radial basis function

(RBF) kernel was used.

• GPD. The graph pattern diffusion kernel was implemented as discussed in

Section 5.1. The default parameter for the GPD kernel is a diffusion rate of

λ =20% and the diffusion time τ = 5.

46

5.2.4 Experimental Results

Here the results of our graph classification experiments are presented. One

round of experiments was performed to evaluate the methods based on exact

subgraph mining, and another round of experiments with approximate subgraph

mining. For both of these two subgraph mining methods, patterns were selected

that were general graphs, trees, and paths.

A simple feature selection method is applied in order to identify the most

discriminating frequent patterns. Using a simple statistical formula, Pearson cor-

relation coefficient (PCC), the correlation is measured between a set of feature

samples (in our case, the occurrences of a particular subgraph in each of the data

samples) and the corresponding class labels. Frequent patterns are ranked accord-

ing to correlation strength, and the top 10% patterns are selected to construct the

feature set.

5.2.4.1 Comparison between classifiers

The results of the comparison of different graph kernel functions are shown in

Table 5.3. For this results, frequent subgraph mined using exact matching was

used. In the table using general subgraphs (the first 10 rows in Table 5.3), it is

shown that for exact mining of general subgraphs, in 4 of the 10 data sets, the

GPD method provides mean accuracy that is significantly better (at least two

standard deviations above the next best method). In another 4 data sets GPD

gives the best performance, but the difference is less significant but is still more

than 1 standard deviation). In the last two data sets other methods perform

better, but not significantly better. The mismatch and min-max kernels all give

roughly the same performance and hence only the results of the mismatch kernel

47

are shown. The GPD’s superiority is also confirmed in classifications where tree

and path patterns are used.

Table 5.2 compares the performance of our GPD kernel to the CBA method, or

Classification Based on Association. In general it shows comparable performance

to the other methods. In one data set it does show a noticeable increase over the

other methods. This is expected since CBA is designed specifically for discrete

data such as the binary feature occurrences used here. Despite the strengths of

CBA, the GDA method still gives the best performance for 6 of the seven data

sets. These data sets were also tested using the recursive optimal-assignment

kernel included in the JOELib2 computational chemistry library. It’s results are

comparable to those of the CBA method and hence were not included as separate

results here.

Table 5.2. Comparison of GPD kernel to CBA.

Data set GPD CBA
CDK2 inhibitors 88.6* 80.46
COX2 inhibitors 82.7* 77.86
Fxa inhibitors 89.3* 86.87
PDE5 inhibitors 81.9 87.14*
A1A inhibitors 91.4* 87.76
intestinal absorption 63.14* 54.36
toxicity (male rats) 56.66* 55.95

In addition, a classifier called XRules was tested. XRules is designed for

classification of tree data [60]. Chemical graphs, while not strictly trees, often are

close to trees. To run the XRules executable, a graph is transformed to a tree by

randomly selecting a spanning tree of the original graph. Our experimental study

shows the application of XRules on average delivers incompetent results among

the group of classifiers (e.g. 50% accuracy on the CDK2 inhibitor data set), which

48

may be due to the particular way a graph is transformed to a tree. Since tree

patterns are computed for the rule based classifier CBA in our comparison, XRules

was not explored further.

A method based on a recursive optimal-assignment [10] was also tested using

biologically-relevant chemical descriptors labeling each node in a chemical graph.

In order to perform a fair comparison with this method to the other methods,

the chemical descriptors are ignored and the focus is instead on the structural

alignment. In these experiments the performance of this method is very similar

to CBA and hence the results of CBA only are shown.

5.2.4.2 Comparison Between Descriptor Sets

Various types of subgraphs such as trees, paths, and cycles have been used

in kernel functions between chemical compounds. In addition to exact mining of

general subgraphs, approximate subgraph mining was also used to generate the

features for our respective kernel methods. In both cases the general subgraphs

mined are filtered into sets of trees and sets of paths as well.

The results for all kernels using exact tree subgraphs are identical to those for

exact general subgraphs. This is not surprising, given that most chemical frag-

ments are structured as trees. The results using exact path subgraphs, however,

do show some shifts in accuracy but the difference is not significant. These results

are not recorded here since they add no appreciable information to the evaluation

of the various methods.

The results using approximate subgraph mining (shown in Table 5.4) are sim-

ilar to those for exact subgraph mining (shown in Table 5.3). In contrast to the

hypothesis that using approximate subgraph mining might improve the classifi-

49

cation accuracy, the data show that there is no significant difference between the

set of features. However, it is clear that GPD is still better than the competing

kernel functions.

Table 5.3. Comparison of different graph kernel functions and fea-
ture sets in GPD experiments, with strict subgraph matching.

subgraph type data set MIS GPD Linear RBF
CDK2 76.3 2.06 87.2* 2.04 76.3 2.06 77.9 1.6
COX2 85.1* 0.99 83.2 0.79 85.1* 0.99 84.5 1.08
FXa 87 0.94 87.6* 0.52 87 0.94 86.2 0.42
PDE5 83.2* 0.63 82.8 1.4 83.2* 0.63 83 0.67

general A1A 84.8 0.63 90.9* 0.74 85 0.94 88.7 1.06
int. abs. 49.53 4.82 56.86* 3.12 50.7 4.56 47.56 3.44
toxicity (FM) 51.46 3.4 54.81* 1.16 51.95 3.26 50.95 2.75
toxicity (FR) 52.99 4.33 56.35* 1.13 49.57 4.71 51.94 3.34
toxicity (MM) 49.64 3.43 60.71* 1.16 49.38 1.96 51.16 2.28
toxicity (MR) 50.44 3.06 56.83* 1.17 49.91 3.09 54.3 2.59
CDK2 76.3 2.06 87.2* 2.04 76.3 2.06 77.9 1.6
COX2 85.1* 0.99 83.2 0.79 85.1* 0.99 84.5 1.08
FXa 87 0.94 87.6* 0.52 87 0.94 86.2 0.42
PDE5 83.2* 0.63 82.8 1.4 83.2* 0.63 83 0.67

trees A1A 84.8 0.63 90.9* 0.74 85 0.94 88.7 1.06
int. abs. 49.53 4.82 56.86* 3.12 50.7 4.56 47.56 3.44
toxicity (FM) 51.46 3.4 54.81* 1.16 51.95 3.26 50.95 2.75
toxicity (FR) 52.99 4.33 56.35* 1.13 49.57 4.71 51.94 3.34
toxicity (MM) 49.64 3.43 60.71* 1.16 49.38 1.96 51.16 2.28
toxicity (MR) 50.44 3.06 56.83* 1.17 49.91 3.09 54.3 2.59
CDK2 76.3 0.82 86.2* 2.82 76.4 0.97 77.1 0.74
COX2 85* 0 83.7 0.48 85* 0 85* 0
FXa 86.8 0.79 87.6* 0.52 86.8 0.79 86.6 0.84
PDE5 82.6 0.84 83* 1.25 82.6 0.84 82.7 0.95

paths A1A 84.1 0.88 91.2* 1.14 84 0.67 85.7 0.67
int. abs. 49.07 7.16 54.07* 3.52 50.58 4.32 50 4.72
toxicity (FM) 50.14 3.41 54.79* 2.13 50.37 2.59 50.14 4.38
toxicity (FR) 47.83 6.85 55.93* 2.44 48.32 7.83 50.09 4.37
toxicity (MM) 46.85 3.57 58.81* 1.07 48.6 4.78 50.33 2.29
toxicity (MR) 50.26 3.13 54.71* 1.38 48.69 3.93 54.27 3.04

50

Table 5.4. Comparison of different graph kernel functions and fea-
ture sets in GPD experiments, with approximate subgraph matching.

subgraph type data set MIS GPD Linear RBF
CDK2 76.3 2.06 85.7* 1.49 76.3 2.06 77.9 1.6
COX2 85* 0 83 0.67 85* 0 85* 0

general FXa 86.4 0.52 87.5* 0.53 86.4 0.52 86.1 0.32
PDE5 83.3* 0.67 83.3* 1.64 83.3* 0.67 82.9 0.74
A1A 86.2 1.81 88.7* 0.82 86.2 1.81 88.7 0.48
int. abs. 51.28 4.3 60.81* 2.63 52.67 4.07 51.86 6.18
CDK2 76.3 2.06 85.7* 1.49 76.3 2.06 77.9 1.6
COX2 85* 0 83 0.67 85* 0 85* 0

trees FXa 86.4 0.52 87.5* 0.53 86.4 0.52 86.1 0.32
PDE5 83.3* 0.67 83.3* 1.64 83.3* 0.67 82.9 0.74
A1A 86.2 1.81 88.7* 0.82 86.2 1.81 88.7* 0.48
int. abs. 51.28 4.3 60.81* 2.63 52.67 4.07 51.86 6.18
CDK2 76.3 0.82 86.1* 2.13 76.4 0.97 77.1 0.74
COX2 85* 0 83.4 0.7 85* 0 85* 0

paths FXa 86 0 88* 0.82 86 0 86 0
PDE5 83.1 0.57 83.8* 2.53 83.1 0.57 82.9 0.57
A1A 83.6 0.7 88.6* 0.7 83.6 0.7 85.7 0.67
int. abs. 49.88 4.3 60.23* 4.34 51.05 3.82 49.65 3.76

5.2.4.3 Effect Of Varying GPD Diffusion Rate And Time

This section evaluates the sensitivity of the GPD methods to its two param-

eters: diffusion rate λ and diffusion time. Different diffusion rate λ values and

diffusion time values were tested. Figure 5.2 shows that the GPD algorithm is not

very sensitive to the two parameters at the range that was tested. Although only

three data sets are shown in Figure 5.2, the observation is true for other data sets

in the experiments.

51

0.1 0.15 0.2 0.25 0.3 0.35
82

83

84

85

86

87

88

89

90

diffusion rate λ

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

GPD Classification Sensitivity to λ

CDK2 inhibitors
COX2 inhibitors
FXa inhibitors

1 1.5 2 2.5 3 3.5 4 4.5 5
82

83

84

85

86

87

88

89

90

Diffusion time τ

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

GPD Classification Sensitivity to diffusion time

CDK2 inhibitors
COX2 inhibitors
FXa inhibitors

Figure 5.2. Effect of diffusion rate and time on GPD classification
accuracy.

5.3 Conclusions

With the rapid development of fast and sophisticated data collection methods,

data has become complex, high-dimensional and noisy. Graphs have proven to be

powerful tools for modeling complex, high-dimensional and noisy data; building

highly accurate predictive models for graph data is a new challenge for the data

mining community. This work demonstrates the utility of a novel graph kernel

function, graph pattern diffusion kernel (GPD kernel). It is shown that the GPD

kernel can capture the intrinsic similarity between two graphs and has the low-

est testing error in many of the data sets evaluated. Although a very efficient

computational framework was developed, computing a GPD kernel may be hard

for large graphs. Future work will concentrate on improving the computational

efficiency of the GPD kernel for very large graphs, as well as performing addi-

tional comparisons between this method other 2D-descriptor and QSAR-based

methods.

52

Chapter 6

Matching Kernels with

Approximate Pattern-based

Features

This chapter expands on the GPD kernel presented in the previous chapter, by

defining a similar kernel function that uses a matching-based set kernel instead of

an alignment kernel. This method is termed a Graph Pattern Matching (GPM)

kernel. The advantage of this modification is that the GPM kernel, unlike GPD,

is guaranteed to be positive semi-definite, and hence a true Mercer kernel. This

algorithm was tested using 16 chemical structure data sets. The experimental re-

sults demonstrate that this method outperforms existing state-of-the-art methods

with a large margin.

53

6.1 GPM: A Graph Pattern Matching Kernel with

Diffusion for Accurate Graph Classification

This section presents the design of a graph matching kernel with diffusion. The

section begins by first presenting a general framework for graph matching. Then

the pattern based graph matching kernel is presented. Finally a technique called

“pattern diffusion” is discussed that significantly improves graph classification

accuracy in practice.

6.1.1 Graph Matching Kernel

To derive an efficient algorithm scalable to large graphs, a function Γ : V → Rn

is used to map nodes in a graph to a n dimensional feature space that captures not

only the node label information but also the neighborhood topological information

around the node. If there is such a function Γ, the following graph kernel may be

defined:

Km(G,G′) =
∑

(u,v)∈V [G]×V [G′]

K(Γ(u), Γ(v)) (6.1)

K can be any kernel function defined in the co-domain of Γ. This function Km

is called a graph matching kernel. The following theorem indicates that Km is

symmetric and positive semi-definite and hence a real kernel function.

Theorem 6.1.1 The graph matching kernel is symmetric and positive semi-definite

if the function K is symmetric and positive semi-definite.

Proof sketch: the matching kernel is a special case of the R-convolution kernel

and is hence positive semi-definite as proved in [31].

54

The kernel function can be visualized by constructing a weighted complete bi-

partite graph: connecting every node pair (u,v) ∈ V [G]×V [G′] with an edge. The

weight of the edge (u,v) is K(Γ(v), Γ(v)). Figure 6.1 shows a weighted complete

bipartite graph for V [G] = {v1, v2, v3} and V [G′] = {u1, u2, u3}. Highlighted edges

(v1, u2), (v2, u1), (v3, u3) have larger weights than the rest of the edges (dashed).

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 6.1. The maximum weighted bipartite graph for graph
matching.

From the figure it can be seen that if two nodes are quite dissimilar, the weight

of the related edge is small. Since dissimilar node pairs usually outnumber similar

node pairs, if a linear kernel is used for nodes, kernel function may be noisy and

hence lose the signal. In this design, the RBF kernel function is used, as specified

below, to penalize dissimilar node pairs.

K(X,Y) = e
−||X−Y ||22

2 (6.2)

where ||X||22 is the squared L2 norm of a vector X.

55

6.1.2 Graph Pattern Matching Kernel

One way to design the function Γ is to take advantage of frequent patterns

mined from a set of graphs. Intuitively if a node belongs to a subgraph F , there

is some information about the local topology of the node. Following the intuition,

given a node v in a graph G and a frequent subgraph F , a function ΓF is designed

such that

ΓF (v) =

1 if u belongs an embedding of F in G

0 otherwise

The function ΓF is called a “pattern membership function” since this function

tests whether a node occurs in a specific subgraph feature (“membership to a

subgraph”).

Given a set of frequent subgraphs F = F1, F2, . . . , Fn, each membership func-

tion is treated as a dimension and the function ΓF is defined as below:

ΓF(v) = (ΓFi
(v))n

i (6.3)

In other words, given n frequent subgraph, the function Γ maps a node v in G

to a n-dimensional space, indexed by the n subgraphs, where values of the features

indicate whether the node is part of the related subgraph in G.

Example 6.1.1 In Figure 6.2, it is shown that two subgraph features F1 and

F2. F1 have an embedding in Q at {q1, q2} and F2 occurs in Q at {q1, q3}. The

occurrences are depicted using shadings with different color and orientations. For

node q1, a subgraph F1 is considered as a feature, and ΓF1(q1) = 1 since q1 is part

of an embedding of F1 in Q. Also, ΓF1(q3) = 0 since q3 is not part of an embedding

56

of F1 in Q. Similarly, ΓF2(q1) = 1 and ΓF2(q3) = 1. Hence ΓF1,F2(q1) = (1, 1)

and ΓF1,F2(q3) = (0, 1). The values of the function ΓF1,F2 are also illustrated in

the same figure using the annotated Q.

b

b

a ab

bb

Q
F 2

F 1

q 2

q 1

q 3

b

b

a

q 2

q 3

q 1

1, 0

0 , 1

1 , 1

A nnota ted Q

Figure 6.2. Example pattern membership functions for GPM ker-
nel.

6.1.3 Graph Pattern Matching Kernel with Pattern Diffusion

This section introduces a better technique than the pattern membership func-

tion to capture the local topology information of nodes. This technique is called

“pattern diffusion”. It’s design has the following advantages:

• It is generic and does not assume any domain knowledge from a specific ap-

plication. The diffusion process may be applied to graphs with dramatically

different characteristics.

• The diffusion process is straightforward to implement and can be computed

efficiently.

• It is prove that the diffusion process is related to the probability distribution

of a graph random walk. This explains why the simple process may be used

to summarize local topological information.

57

Below, the pattern diffusion kernel is outlined in three steps.

In the first step, a seed is identified as a starting point for the diffusion. In

this design, a “seed” could be a single node, or a set of connected nodes in the

original graph. In the experimental study, frequent subgraphs are always used for

seeds since a seed from one graph can be easily compared to a seed in another

graph.

In the second step given a set of nodes S as seed, a diffusion function ft is

recursively defined in the following way.

The base f0 is defined as:

f0(u) =

1/|S| if u ∈ S

0 otherwise

Define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v)× (1− λ

d(v)
) +

∑

u∈N(v)

ft(u)× λ

d(u)
(6.4)

In the notation, N(v) = {u|(u, v) is an edge } is the set of nodes that connects

to v directly. d(v) = |N(v)| is the node degree of v. λ is a parameter that controls

the diffusion rate.

The formula 6.4 describes a process where each node distributes a λ fraction

of its value to its neighbors evenly and in the same way receives some value from

its neighbors. It is called “diffusion” because the process simulate the way a value

is spreading in a network. The intuition is that the distribution of such a value

encodes information about the local topology of the network.

To constrain the diffusion process to a local region, one parameter called dif-

fusion time, denoted by τ , is used to control the diffusion process. Specifically the

58

diffusion process is limited to a local region of the original graph with nodes that

are at most τ hops away from a node in the seed S. In this sense, the diffusion

should be named “local diffusion”.

Finally in the last step, for the seed S, define the mapping function Γd
S as the

limit function of ft as t approaches to infinity, or

Γd
S = lim

t→∞
ft (6.5)

And given a set of frequent subgraph F = F1, F2, . . . , Fn as seeds, define the

pattern diffusion function Γd
F as:

Γd
F(v) = (Γd

Fi
(v))n

i (6.6)

6.1.4 Connections of Other Graph Kernels

6.1.4.1 Connection to Marginalized Kernels

Here the connection of pattern matching kernel function to the marginalized

graph kernel [24] is shown, which uses a Markov model to randomly generate

walks of a labeled graph.

Given a graph G with nodes set V [G] = {v1, v2, . . . , vn}, and a seed S ⊆ V [G],

for each diffusion function ft, construct a vector Ut = (ft(v1), ft(v2), . . . , ft(vn)).

According to the definition of ft, Ut+1 = M × Ut where the matrix M is defined

as:

M(i, j) =

λ
d(vj)

if i 6= j and i ∈ N(j)

1− λ
d(vi)

i = j

0 otherwise

59

In this representation, compute the stationary distribution (fS = limt→∞ ft)

by computing M∞ × U0.

Notice that the matrix M corresponds to a probability matrix corresponding

to a Markov Chain since

• all entries are non-negative

• column sum is 1 for each column

Therefore the vector M∞ × U0 corresponds to the stationary distribution of

the local random walk as specified by M . In other words, rather than using

random walk to retrieve information about the local topology of a graph, the

stationary distribution is used to retrieve information about the local topology.

The experimental study shows that this in fact is an efficient method of graph

classification.

6.1.4.2 Connection to Optimal Assignment Kernel

The optimal assignment (OA) kernel [10] carries the same spirit of the graph

pattern matching kernel in that OA uses pairwise node kernel function to con-

struct a graph kernel function. OA kernel has been utilized for cheminformatics

applications and is found to deliver good results empirically.

There are two major differences between GPM and the OA kernel. (1) OA

kernel is not positive semi-definite and hence is not Mercer kernel in a strict sense.

Non Mercer kernel functions are used to train SVM model and the problem is that

the convex optimizer utilized in SVM will not converge to a global optimal and

hence the performance of the SVM training may not be reliable. (2) OA utilizes

a complicated recursive function to compute the similarity between nodes, which

make the computation of the kernel function runs slowly for large graphs [45].

60

6.1.5 Pattern Diffusion Kernel and Graph Classification

This section summarizes the discussions presented so far and shows how the

kernel function is utilized to construct an efficient graph classification algorithm

in both the training and testing phases.

6.1.5.1 Training Phase

In the training phase, graphs of the training data set D = {(Gi, Ti,)}n
i=1 are

divided into groups according to their class labels. For example in binary classi-

fication, two groups of graphs: positive or negative. For multi-class classification,

graphs are partitioned according to their class label where graphs have the same

class labels are grouped together. The training phase is composed of four steps:

• Obtain frequent subgraphs. Identify frequent subgraphs from each graph

group and union the subgraph sets together as the seed set F .

• For each graph G in the training data set, use the node pattern diffusion

function Γd
F to label nodes in G. Thus the feature vector of a node v is a

vector LV = (Γd
Fi

(v))m
i=1 with length m = |F|.

• For two graphs G,G′, construct the complete weighted bipartite graph as

described in section 6.1.1 and compute the kernel Km(G,G′) using Equation

6.1 and Equation 6.2.

• Train a predictive model using a kernel classifier.

6.1.5.2 Testing Phase

In the testing phase, the kernel function is computed for graphs in the testing

and training data sets. The trained model is used to make predictions about

61

graph in the testing set.

• For each graph G in the testing data set, use Γd
F to label nodes in G and

create feature vectors as in the training phase.

• Use Equation 6.1 and Equation 6.2 to compute the kernel function Km(G,G′)

for each graph G in the testing data set and for each graph G′ in the training

data set.

• Use kernel classifier and trained models to obtain prediction accuracy of the

testing data set

The section below presents the empirical study of different kernel functions

including the pattern matching kernel.

6.2 Experimental Study

Classification experiments were conducted using six different graph kernel func-

tions, including the pattern diffusion kernel, on sixteen different data sets. There

are twelve chemical-protein binding data sets, and the rest are chemical toxicity

data sets. All of the experiments were performed on a desktop computer with

a 3Ghz Pertium 4 processor and 1 GB of RAM. The following subsections de-

scribe the data sets and the classification methods in more detail along with the

associated results.

In all classification experiments, the LibSVM [4] was used as kernel classifier.

The nu-SVC was used with default parameter ν = 0.5. The classification accuracy

(TP+TN/S, TP: true positive, TN: true negative, S: total number of testing

samples) is computed by averaging over a 10-fold cross-validation experiment.

62

Standard deviation is computed similarly. To have a fair comparison, default SVM

parameters were used in all cases, and were not tuned to increase the accuracy of

any method.

6.2.1 Data Sets

Sixteen data sets were selected, covering prediction of chemical-protein binding

activity and chemical toxicity. The first seven data sets are manually extracted

from the BindindDB database [30]. The next five are established data sets taken

from Jorissen et al. [23]. The last four are from the Predictive Toxicology Chal-

lenge [14] (PTC). Detailed information for the data sets is available in the following

table, where # G: number of samples (chemical compounds) in the data set. #

P : positive samples. # N : negative samples .

Table 6.1. Characteristics of data sets in GPM experiments.

Source Dataset # G # P # N
AChE 138 69 69
ALF 93 47 46

EGF-R 377 190 187
BindingDB HIV-P 202 101 101

HIV-RT 365 183 182
HSP90 82 41 41
MAPK 255 126 129
CDK2 100 50 50
COX2 100 50 50

Jorissen FXa 100 50 50
PDE5 100 50 50
A1A 100 50 50

Predictive PTC-FM 344 152 192
Toxicology PTC-FR 336 129 207
Challenge PTC-MM 351 121 230

PTC-MR 349 143 206

63

6.2.1.1 BindingDB Sets

The BindingDB database contains more than 450 proteins. For each protein,

the database record chemicals that bind to the protein. Two types of activity

measurements Ki and IC50 are provided. Both measurements measure inhibi-

tion/dissociation rates between a proteins and chemicals. From BindingDB, 7

proteins were manually selected with a wide range of known interacting chemicals

(ranging from tens to several hundreds). These data sets are AChE, ALF, EGF-R,

HIV-P, HIV-RT, HSP90, and MAPK.

6.2.1.2 Jorissen Sets

The Jorissen data sets also contains information about chemical-protein bind-

ing activity. In this case the provider of the data set carefully selected positive

and negative samples and hence are more reliable than the data sets created from

BindingDB. For more information about the creation of the data sets, see [23] in

details. The data sets from this study are: CDK2, COX2, FXa, PDE5, and A1A.

6.2.1.3 PTC Sets

The Predictive Toxicology Challenge (PTC) data sets contain a series of chem-

ical compounds classified according to their toxicity in male rats, female rats, male

mice, and female mice. While chemical-protein binding activity is an important

type of chemical activity, it is not the only type. Toxicity is another important,

though different, kind of chemical activity necessary to predict in drug design.

These data sets (PTC-FR/FM/MR/MM) are well curated and highly reliable.

64

6.2.2 Kernel Functions

Six different kernel functions were selected for evaluation: Marginalized [24],

spectrum [7], tanimoto [29], subtree [33], optimal assignment [10], together with

the graph pattern matching kernel.

Four kernel functions (Marginalized, spectrum, tanimoto, subtree) are com-

puted using the open source Chemcpp v1.0.2 package [36]. The optimal assign-

ment kernel was computed using the JOELib2 package, and is not strictly a kernel

function, but still provides good prediction accuracy. The graph pattern matching

kernel was computed using MATLAB code.

6.2.3 Experimental Results

6.2.3.1 Comparison Between Kernel Functions

This subsection presents the results of our graph classification experiments

with various kernel functions. Figure 6.3 shows the classification accuracy for

different kernel functions and data sets, averaged over a 10-fold cross validation

experiment. The standard deviations (omitted) of the accuracies are generally

very high, from 5-10%, so statistically significant differences between kernel func-

tions are generally not observed.

The data shows that the GPM method is competitive for all sixteen data sets.

If the accuracy of each kernel function averaged over all data sets is examined, the

GPM kernel performs the best overall. Again, the standard deviations are high so

the differences between the top performing kernels are not statistically significant.

Still, with 16 different data sets some trends are clear: GPM kernel delivers the

highest classification accuracy in 8 out of the 16 data sets, with tanimoto kernel

best in 4, marginalized best in 2, subtree in 2, optimal assignment in 1 and

65

Figure 6.3. Average accuracy for kernel functions and data sets in
GPM experiments.

spectrum in none.

Although GPM does not work well on a few data sets such as AChE, HIV-RT,

MAPK, and PTC-FR/MR, overall it performs better when compared to any other

kernel for a majority of data sets. It is better than every other kernel function in

at least 10 of the 16 data sets.

In general the GPM, spectrum and tanimoto kernels perform the best, with

over all average accuracy of about 80%. The subtree, optimal assignment, and

marginalized also perform very good, in mid to high 70%. The min/max tan-

imoto kernel performed much worse than the other methods, and hence it was

not included in the figure. Note that the optimal assignment kernel is missing a

prediction accuracy for the FXa data set, this was due to a terminal error in the

JOELib2 software used to calculate this kernel on this data set.

66

6.3 Conclusions

Graphs have proven to be powerful tools for modeling complex, high-dimensional

biological data; building highly accurate predictive models for chemical graph clas-

sification is a goal for cheminformatics and drug design. This work demonstrates

the utility of a novel graph kernel function, graph pattern matching kernel (GPM

kernel). It is shown that the GPM kernel can capture the intrinsic connection

between a chemical and its class label and has the lowest testing error in majority

of the data sets we evaluated.

67

Chapter 7

Graph Wavelets for Topology

Comparison

Previous kernels such as alignment other substructure-based kernels attempt to

mitigate the high-dimensionality of graphs in different ways. The first possibility is

to use complex patterns, such as general subgraphs, but restrict pattern selection

in some way. The second approach is to use simpler patterns such as paths or

trees, but retain the set of feature patterns. In the most extreme case, graphs

are reduced to point sets of vertices for very fast but information-poor analysis.

The approach presented here, termed Wavelet-Alignment (WA) kernel, works on

simpler graph representations but uses an application of graph wavelet analysis to

create high-quality localized structure features for chemical analysis. The wavelet

functions are used to condense neighborhood information about an atom into

a single feature of that atom, rather than features spread over it’s neighboring

atoms. By doing so, (local) features are extracted with various topological scales

about chemical structures and use these wavelet features to compute an alignment

of two chemical graphs. This chapter describes the wavelet-alignment method in

68

detail and compares it to competing methods for chemical activity prediction with

several data sets.

7.1 Graph Wavelet Alignment Kernels for Drug Virtual

Screening

The following sections outline the algorithms that drive our experimental

method. This method measures the similarity of graph structures whose nodes

and edges have been labeled with various features. These features represent differ-

ent kinds of chemical structure information including atoms and chemical bonds

types among others. To compute the similarity of two graphs, the nodes of one

graph are aligned with the nodes of the second graph, such that the total overall

similarity is maximized with respect to all possible alignments. Vertex similar-

ity is measured by comparing vertex descriptors, and is computed recursively so

that when comparing two nodes, the immediate neighbors of those nodes are also

compared, and the neighbors of those neighbors, and so on.

Figure 7.1. Two wavelet functions in three dimensions, Mexican
hat and Haar.

69

7.1.1 Graph Alignment Kernel

An alignment of two graphs G and G′ (assuming |V [G] ≤ |V [G′]|) is a 1-1

mapping π : V [G] → V [G′]. Given an alignment π, define the similarity between

two graphs, as measured by a kernel function kA, below:

kA(G,G′) := maxπ

∑
v∈V [G] kn(v, π(v))+

∑
u,v ke((u, v), (π(u), π(v)))

(7.1)

The function kn is a kernel function to measure the similarity of nodes and

the function ke is a kernel function to measure the similarity of edges. Intuitively,

equation 7.1 use an additive model to compute the similarity between two graphs

by computing the sum of the similarity of nodes and the similarity of edges.

The maximal similarity among all possible alignments is defined as the similarity

between two graphs.

7.1.2 Simplified Graph Alignment Kernel

A direct computation of the graph alignment kernel is computationally inten-

sive and is unlikely scalable to large graphs. With no surprise, the graph alignment

kernel computation is no easier than the subgraph isomorphism problem, a known

NP-hard problem 1. To derive efficient algorithms scalable to large graphs, the

graph kernel function is simplified with the following formula:

kM(G,G′) = max
π

∑

v∈V [G]

ka(f(v), f(π(v))) (7.2)

1Formally, showing a reduction from the graph alignment kernel to the subgraph isomorphism
problem is needed. The details of such reduction are omitted due to their loose connection to
the main theme of the current paper, which is advanced data mining approach as applied to
cheminformatics applications

70

Where π : V [G] → V [G′] denotes an alignment of graph G and G′. f(v) is a

set of features associated with a node that not only include node features but also

include information about topology of the graph where v belongs to.

Equation 7.2, computes a maximal weighted bipartite graph, which has an

efficient solution known as the Hungarian algorithm. The complexities of the

algorithm is O(|V [G]|3). See [10] for further details.

Provided below is an efficient method, based on graph wavelet analysis, to

create features to capture the topological structure of a graph.

7.1.3 Graph Wavelet Analysis

Originally proposed to analyze time series signals, wavelet analysis transforms

a series of signals to a set of summaries with different scale. Two of the key

insights of wavelet analysis of signals are (i) using localized basis functions and (ii)

analysis with different scales. Wavelet analysis offers efficient tools to decompose

and represent a function with arbitrary shape [6, 11]. Since invented, wavelet

analysis has quickly gained popularity in a wide range of applications outside

time series data, such as image analysis and geography data analysis. In all these

applications, the level of detail, or scale is considered as an important factor in

data comparison and compression. Figure 7.1 shows two examples of wavelet

functions in a 3D space, the Haar and Mexican Hat.

Intuition. With wavelet analysis as applied to graph representations chemical

structure, for each atom, features about the atom and its local environment are

collected at different scales. For example, information can be collected about the

average charge of an atom and it’s surrounding atoms, then assign the average

value as a feature to the atom. Information can also be collected about whether

71

an atom belongs to a nearby functional group, whether the surrounding atoms of

a particular atom belong to a nearby functional group, and the local topology of

an atom to its nearby functional groups.

In summary, conceptually the following two types of insights are gained about

the chemicals after applying wavelet analysis to graph represented chemical struc-

ture:

• Analysis with varying levels of scale. Intuitively, at the finest level, two

chemical structures are compared by matching the atoms and chemical

bonds in the two structures. At the next level, comparison of two regions is

performed (e.g. chemical functional groups). At an even coarser level, small

regions may be grouped into larger ones (e.g. pharmacophore), and two

chemicals are compared by matching the large regions and the connections

among large regions.

• Non-local connection. In a chemical structure, two atoms that are not di-

rectly connected by a chemical bond may still have some kind of interaction.

Therefore when comparing two graphs and their vertices cannot depend only

on the local environment immediately surrounding an atom, but rather must

consider both local and non-local environment.

Though conceptually appealing, current wavelet analysis is often limited to

numerical data with regularly structures such as matrices and images. Graphs,

however, are arbitrarily structured and may represent innumerable relationships

and topologies between data elements. In order to define a reasonable graph

wavelet functions, the following two important concepts are introduced:

• h-hop neighborhood

72

• Discrete wavelet functions

The former, h-hop neighborhood, is essentially used to project graphs from a

high dimensional space with arbitrary topology into a Euclidean space suitable

for operation with wavelets. The h-hop measure defines a distance metric between

vertices that is based on the shortest path between them. The discrete wavelet

function then operates on a graph projection in the h-hop Euclidean space to

compactly represent the information about the local topology of a graph. It is the

use of this compact wavelet representation in vertex comparison that underlies the

complexity reduction achieved by this method. Based on the h-hop neighborhood,

a discrete wavelet function is used to summarize information in a local region of

a graph and create features based on the summarization. These two concepts are

discussed in detail below.

7.1.3.1 h-hop neighborhood

In this section the following definitions are introduced.

Definition 7.1.1 Given a node v in a graph G the h-hope neighborhood of

v, denoted by Nh(v), is the set of nodes that are (according to the shortest path)

exactly h hops away from v.

For example if h = 0, then N0(v) = v and if h = 1, then N1(v) = {u|(u, v) ∈
E[G]}.

Here fv denotes the feature vector associated with a node v in a graph G. |f | is
the feature vector length (number of features in the feature vector). The average

feature measurement, denoted by f j(v) for nodes in Nj(v) is

73

f j(v) =
1

|Nj(v)|
∑

u∈Nj(v)

fu (7.3)

Example 7.1.1 The left part of the Figure 7.2 shows a chemical graph. Given a

node v in the graph G, label the shortest distance of nodes to v in the G. In this

case N0(v) = v and N1(v) = {t, u}. If the feature vector contains a single feature

of atomic number, f 1(v) is the average atomic number of atoms that are at most

1-hop away from v. In this case, since N1(v) = {t, u} and {t, u} are both carbon

with atomic number equal to eight, then f 1(v) is equal to eight as well.

Figure 7.2. A chemical graph and hop distances.

7.1.3.2 Discrete wavelet functions

In order to adapt a wavelet function to discrete structure such as graphs, a

wavelet function ψ(x) must be applied to the h-hop neighborhood. Towards that

end, a wavelet function ψ(x) (such as the Haar, or Mexican Hat) can be scaled

to have support on the domain [0, 1), with integral 0, and partition the function

74

into h + 1 intervals. Then compute the average, ψj,h, as the average of ψ(x) over

the jth interval, 0 ≤ j ≤ h as below.

ψj,h ≡ 1

h + 1

∫ (j+1)/(h+1)

j/(h+1)

ψ(x)dx (7.4)

With neighborhood and discrete wavelet functions, wavelet analysis can be

applied to graphs. This analysis is called wavelet measurements, denoted by Γh(v),

for a node v in a graph G at scale up to h > 0.

Γh(v) = Ch,v ∗
h∑

j=0

ψj,h ∗ f j(v) (7.5)

where Ch,v is a normalization factor with C(h, v) = (
∑h

j=0

ψ2
j,h

|Nk(v)|)
−1/2

Define Γh(v) as the sequence of wavelet measurements as applied to a node v

with scale value up to h. That is Γh(v) = {Γ1(v), Γ2(v), . . . , Γh(v)}. Call Γh(v) the

wavelet measurement vector of node v. Finally insert the wavelet measurement

vector into the alignment kernel with the following formula.

kΓ(G,G′) = max
π

∑

v∈V [G]

ka(Γ
h(v), Γh(π(v))) (7.6)

where ka(Γ
h(v), Γh(π(v)) is a kernel function defined on vectors. Two popular

choices are linear kernel and radius based function kernel.

Example 7.1.2 The right part of Figure 7.2 shows a chemical graph overlayed

with a wavelet function centered on a specific vertex. It is clear how the wavelet

is most intense at the central vertex, hop distance of zero, corresponding to a

strongly positive region of the wavelet function. As the hop distance increases

75

the wavelet function becomes strongly negative, roughly at hop distances of one

and two. At hop distance greater than two, the wavelet function returns to zero

intensity, indicating negligible contribution from vertices at this distance.

7.2 Experimental Study

Classification experiments were conducted on five different biological activity

data sets, and measured support vector machine (SVM) classifier prediction ac-

curacy for several different feature generation methods. The following sections

describe the data sets and classification methods in more detail, along with the

associated results.

We performed all of experiments on a desktop computer with a 3Ghz Pertium

4 processor and 1 GB of RAM.

7.2.1 Data Sets

Five data sets were selected to represent typical chemical benchmarks in drug

design to evaluate the classifier performance. The Predictive Toxicology Challenge

data set, discussed by Helma et al [14], contains a set of chemical compounds clas-

sified according to their toxicity in male rats (PTC-MR), female rats (PTC-FR),

male mice (PTC-MM), and female mice (PTC-FM). The Human Intestinal Ab-

sorption (HIA) data set (Wessel et al. [53]) contains chemical compounds classified

by intestinal absorption activity. The remaining data set (MD) is from Patterson

et al [35], and was used to validate certain molecule descriptors. Various statistics

for these data sets can be found in Table 7.1.

All of these data sets exist natively as binary classification problems, therefore

in the case of the MD and HIA data sets, some preprocessing is required to

76

Table 7.1. Data set and class statistics for WA experiments.
Dataset # Graphs Class Labels Count

regression 0 - 100 86
binary 0 39

1 47
HIA 86 multi-class 1 21

2 18
3 21
4 26

regression 0 - 7000 310
binary 0 162

1 148
MD 310 multi-class 1 46

2 32
3 37
4 35

PTC-MR 344 binary 0 192
1 152

PTC-MM 336 binary 0 207
1 129

PTC-FR 351 binary 0 230
1 121

PTC-FM 349 binary 0 206
1 143

transform them into regression and multi-class problems. For regression, this is a

straightforward process of using the compound activity directly as the regression

target. In the case of multi-class problems the transformation is not as direct. A

histogram of compound activity values was chosen to visualize which areas of the

activity space are more dense, allowing natural and intuitive placement of class

separation thresholds.

77

7.2.2 Methods

The performance of the SVM classifier trained with different methods was

evaluated. The first two methods (WA-linear, WA-RBF) are both computed using

the wavelet-alignment kernel, but use different functions for computing atom-atom

similarity; both a linear and RBF function were tested here. Different hop distance

thresholds were evaluated and fixed to h = 3 in all experiments.

The method optimal alignment (OA) consists of the similarity values computed

by the optimal assignment kernel, as proposed by Frölich et al [10]. There are sev-

eral reasons that we consider OA as the current-state-of-the-art graph based chem-

ical structure classification method. First, the OA method is developed specifically

for chemical graph classification. Second the OA method contains a large library

to compute different features for chemical structures. Third, the OA method has

developed a sophisticated kernel function to compute the similarity between two

chemical structures. The experimental study shows that the wavelet analysis ob-

tains performance profiles comparable to, and sometimes exceeding that of the

existing state-of-the-art chemical classification approaches. In addition, a signifi-

cant computation time reduction was achieved by using the wavelet analysis. The

details of the experimental study are shown below.

In these experiments, the support vector machine (SVM) classifier was used

in order to generate activity predictions. The LibSVM classifier was used, as

implemented by Chang et al [4] and included in the Weka data-mining software

package by Witten et al. [56]. The SVM parameters were fixed across all methods,

and we use a linear kernel. For (binary) classification nu-SVC was used for multi-

class classification with nu = 0.5. The Haar wavelet function was used in the WA

experiments. Classifier performance was averaged over a 10-fold cross-validation

78

set.

Most of the algorithms were developed and tested under the MATLAB pro-

gramming environment. The OA software was provided by [10] as part of their

JOELib software, a computational chemistry library implemented in java. [17]

7.2.3 Results

Below are results of the experimental study of the wavelet-alignment kernel

with two focuses: (i) classification accuracy and (ii) computational efficiency.

7.2.3.1 Classification Accuracy

Table 7.2. Prediction results of cross-validation trials for WA ex-
periments.

Dataset Labels OA WA-RBF WA-linear
real 979.82(32.48)* 989.72(33.60) 989.31(24.62)

HIA binary 51.86(3.73) 61.39(2.77)* 57.67(3.54)
multi-class 29.30(2.23) 39.06(0.63)* 29.76(5.73)

real 3436395(1280) 3436214(1209)* 3440415(1510)
MD binary 67.16(0.86)* 52.51(3.34) 65.41(0.42)

multi-class 39.54(1.65)* 33.35(3.83) 33.93(1.87)
PTC-FM binary 58.56(1.53)* 51.46(3.45) 55.81(1.31)
PTC-FR binary 58.57(2.11) 52.87(2.65) 59.31(1.95)*
PTC-MM binary 58.23(1.25) 52.36(0.93) 58.91(2.078)*
PTC-MR binary 51.51(1.20) 52.38(3.48) 52.09(2.61)*

Table 7.2.3.1 reports the average and standard deviation of the prediction re-

sults over 10 trials. The best results are marked with an asterisk. For classification

problems, results are in prediction accuracy, and for regression problems they are

in mean squared error (MSE) per sample. From the table, observe that for the

HIA data set, WA-RBF kernel significantly outperforms OA for both binary and

multi-class classification. For MD data set, OA does best for both classification

79

sets, but WA-linear is best for regression. For the PTC binary data, the WA-linear

method outperforms the others in 3 of the 4 sets.

7.2.3.2 Computational Efficiency

In Table 7.2.3.2, the kernel computation time for both OA and WA methods

was documented using 6 different data sets. The runtime advantage of the WA

algorithm over OA is clear, showing improved computation efficiency by factors

of over 10 fold for the WA-linear kernel and over 5 fold for the WA-RBF kernel.

Figure 7.2.3.2 shows the kernel computation time across a range of dataset

sizes, with chemical compounds sampled from the HIA data set. Using simple

random sampling with replacement, data sets were created sized from 50 to 500.

OA method was not run on even larger data sets since the experimental results

clearly demonstrate the efficiency of the WA kernel already.

What these run time results do not demonstrate is the even greater com-

putational efficiency afforded by the WA algorithm when operating on general,

non-chemical graph data. As noted at the end of section four, chemical graphs

have some restrictions on their general structure. Specifically, the number of atom

neighbors is bound by a small constant (4 or so). Since the OA computation time

is much more dependent on the number of neighbors, WA is even more advanta-

geous in these circumstances. Unfortunately, since the OA software is designed

as part of the JOELib chemoinformatics library specifically for use with chemical

graphs, it will not accept generalized graphs as input, and hence this aspect of

the algorithm could not be empirically demonstrated

80

Table 7.3. Running time results for WA experiments.
Dataset Kernel Time Speedup

OA 75.87 -
HIA WA-RBF 13.76 5.51

WA-linear 4.91 15.45
OA 350.58 -

MD WA-RBF 50.85 6.89
WA-linear 26.82 13.07

OA 633.13 -
PTC-FM WA-RBF 103.95 6.09

WA-linear 44.87 14.11
OA 665.95 -

PTC-FR WA-RBF 116.89 5.68
WA-linear 54.64 12.17

OA 550.41 -
PTC-MM WA-RBF 99.39 5.53

WA-linear 47.51 11.57
OA 586.12 -

PTC-MR WA-RBF 101.68 5.80
WA-linear 45.93 12.73

7.3 Conclusions

Graph structures are a powerful and expressive representation for chemical

compounds. This work presents a new method wavelet-assignment, for computing

the similarity of chemical compounds, based on the use of an optimal assignment

graph kernel function augmented with pattern and wavelet based descriptors.

The experimental study demonstrates that this wavelet-based method delivers an

improved classification model, along with an order of magnitude speedup in kernel

computation time. For high-volume, real world data sets, this algorithm is able to

handle a much greater number of graph objects, demonstrating it’s potential for

processing both chemical and non-chemical data in large amounts. In the present

study, only a limited number of atom features are used. In the future, domain

81

Figure 7.3. Comparison of computation times between methods for
WA experiments.

experts can be involved to evaluate the performance of these algorithms, including

the prediction accuracy and the capability for identifying important features in

diverse chemical structure data sets.

82

Chapter 8

Future Work and Overall

Conclusions

Graph structures are a powerful and expressive representation for many kinds

of data. With the rapid development of fast and sophisticated data collection

methods, data has become complex, high-dimensional and noisy. Graphs have

proven to be powerful tools for modeling such data. Building highly accurate

predictive models for graph data is a new challenge for the data mining and

machine learning communities. These methods are of great value in a variety of

fields but especially so in biological and chemical research where computational

tools are helping to make many important new discoveries with respect to disease

treatment and other medical activities.

Much recent activity on graph classification has focused on the definition of

kernel functions for comparing graphs objects directly. The kernel function de-

fines an implicit feature space where graph classification can be accomplished via

support vector machine or other kernel classifier. Classification in kernel space

avoids many difficulties associated with using high-dimensional feature vectors to

83

represent graphs and other complex objects.

The use of kernel functions do not completely mitigate the problems of working

with complex graph objects, however. Currently established kernel functions are

either slow to compute or lack discriminative power. This thesis addresses these

issues through several novel techniques, however there remain many opportuni-

ties for further improvement. In the chemical domain, at least, there appear to

be many high level structural rules that even complex models have difficulty cap-

turing. The most precise models are prohibitively time consuming for databases

of the size now available.

Future work must focus on methods for efficient, large scale analysis. The value

of this high volume approach is exemplified by the proliferation of high-throughput

screening technology, which has drastically accelerated the analysis of chemicals

and biological molecules. The ability to accurately and quickly analyze databases

in the millions of compounds using only computer models offers unprecedented

opportunities for learning about biological systems.

Ultimately, the result of improved computer models is better understanding

and control of complex phenomena. Biological systems, though an important

beneficiaries of such models, are only a single area of potential application. Graphs

are fundamental to our general understanding of many concepts. Therefore, only

by fully understanding graphs can these concepts themselves be fully modeled and

understood.

84

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network flows. SIAM Review, 37 No.1,

1995.

[2] CP Austin, LS Brady, TR Insel, and FS Collins. Nih molecular libraries

initiative. Science, 306(5699):1138–9, 2004.

[3] Yiming Ma Bing Liu, Wynne Hsu. Integrating classification and associa-

tion rule mining. In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, 1998.

[4] C. Chang and C. Lin. Libsvm: a library for support vector machines, 2001.

Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[5] M. Crovella and E. Kolaczyk. Graph wavelets for spatial traffic analysis.

Infocom, 3:1848–1857, 2003.

[6] Antonios Deligiannakis and Nick Roussopoulos. Extended wavelets for mul-

tiple measures. In Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, 2003.

[7] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-

based approaches for classifying chemical compounds. IEEE Transactions on

Knowledge and Data Engineering, 2005.

85

[8] F. Fontaine, M. Pastor, I. Zamora, and F. Sanz. Anchor-grind: Filling

the gap between standard 3d qsar and the grid-independent descriptors.

J. Med. Chem., 48:2687–2694, 2005.

[9] H. Fröhlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions for attriubted

molecular graphs - a new similarity-based approach to adme prediction in

classification. QSAR & Combinatorial Science, 25(4):317–326, 2006.

[10] Fröohlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions for attributed

molecular graphs - a new similarity-based approach to adme prediction in

classification. QSAR & Combinatorial Science, 2006.

[11] M. Garofalakis and Amit Kumar. Wavelet synopses for general error metrics.

ACM Transactions on Database Systems (TODS), 30(4):888–928, 2005.

[12] T Gärtner, P Flach, and S Wrobel. On graph kernels: Hardness results

and efficient alternatives. In Sixteenth Annual Conference on Computational

Learning Theory and Seventh Kernel Workshop, 2003.

[13] David Haussler. Convolution kernels on discrete structures. Technical Report

UCSC-CRL099-10, Computer Science Department, UC Santa Cruz, 1999.

[14] C. Helma, R. King, and S. Kramer. The predictive toxicology challenge

2000-2001. Bioinformatics, 17(1):107–108, 2001.

[15] Tamas Horvath, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining

in outerplanar graphs. In SIGKDD, 2006.

[16] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha. Ac-

curate classification of protein structural families based on coherent subgraph

86

analysis. In Proceedings of the Pacific Symposium on Biocomputing (PSB),

pages 411–422, 2004.

[17] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraph

in the presence of isomorphism. In Proceedings of the 3rd IEEE International

Conference on Data Mining (ICDM), pages 549–552, 2003.

[18] Jun Huan, Wei Wang, Jang Prins, and Jiong Yang. SPIN: Mining maximal

frequent subgraphs from graph databases. pages 581–586, 2004.

[19] Yu Huang, Haifeng Li, Haiyan Hu, Xifeng Yan, Michael S. Waterman, Haiyan

Huang, and Xianghong Jasmine Zhou. Systematic discovery of functional

modules and context-specific functional annotation of human genome. Bioin-

formatics, pages ISMB/ECCB Supplement, 222–229, 2007.

[20] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for

mining frequent substructures from graph data. In PKDD’00, pages 13–23,

2000.

[21] W. Wang J. Huan and J. Prins. Efficient mining of frequent subgraphs in the

presence of isomorphism. In Proc. of ICDM, 2003.

[22] Ruoming Jin, Scott Mccalle, , and Eivind Almaas. Trend motif: A graph

mining approach for analysis of dynamic complex networks. ICDM, 2007.

[23] R. Jorissen and M. Gilson. Virtual screening of molecular databases using a

support vector machine. J. Chem. Inf. Model., 45(3):549–561, 2005.

[24] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between la-

beled graphs. In Proc. of the Twentieth Int. Conf. on Machine Learning

(ICML), 2003.

87

[25] Yiping Ke, James Cheng, , and Wilfred Ng. Correlation search in graph

databases. In SIGKDD, 2007.

[26] Borgwardt K.M. and Kriegel H.-P. Shortest-path kernels on graphs. In in

Proc. of International Conference on Data Mining, 2005.

[27] Taku Kudo, Eisaku Maeda, and Yuji Matsumoto. An application of boosting

to graph classification. In NIPS, 2004.

[28] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. Inter-

national Conference on Data Mining’01, pages 313–320, 2001.

[29] Ralaivola L, Swamidass SJ, Saigo H, and Baldi P. Graph kernels for chemical

informatics. Neural Networks, 18:1093–1110, 2005.

[30] T. Liu, Y. Lin, X. Wen, R. N. Jorrisen, and M.K. Gilson. Bindingdb: a

web-accessible database of experimentally determined protein-ligand binding

affinities. Nucleic Acids Research, 35:D198–D201, 2007.

[31] Siwei Lyu. Mercer kernels for object recognition with local features. In IEEE

Computer Vision and Pattern Recognition, pages 223–229, 2005.

[32] M. Maggioni, J. Bremer Jr, R. Coifman, and A. Szlam. Biorthogonal diffusion

wavelets for multiscale representations on manifolds and graphs. In Proc.

SPIE Wavelet XI, volume 5914, 2005.

[33] P. Mahe and J.P. Vert. Graph kernels based on tree patterns for molecules.

Technical Report HAL:ccsd-00095488, Ecoles des Mines de Paris, September

2006.

88

[34] S. Nijssen and J.N. Kok. A quickstart in frequent structure mining can

make a difference. In Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 647–652, 2004.

[35] D. Patterson, R. Cramer, A. Ferguson, R. Clark, and L. Weinberger. Neigh-

bourhood behaviour: A useful concept for validation of “molecular diversity”

descriptors. J. Med. Chem., 39:3049–3059, 1996.

[36] Jean-Luc Perret, Pierre Mahe, and Jean-Philippe Vert. Chemcpp: an open

source c++ toolbox for kernel functions on chemical compounds, 2007. Soft-

ware available at http://chemcpp.sourceforge.net.

[37] J. Platt. Fast Training of Support Vector Machines using Sequential Minimal

Optimization. MIT Press, Cambridge, MA, 1998.

[38] J. Ross Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann,

1993.

[39] Put R, Xu QS, Massart DL, and Vander Heyden Y. Multivariate adaptive

regression splines (mars) in chromatographic quantitative structure-retention

relationship studies. J Chromatogr A., 1055(1-2), 2004.

[40] Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph ker-

nels. In Technical Report, First International Workshop on Mining Graphs,

Trees and Sequences, 2003.

[41] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of

tree and graph searching. In Proceeding of the ACM Symposium on Principles

of Database Systems (PODS), 2002.

89

[42] Aaron Smalter, Jun Huan, and Gerald Lushington. Gpd: A graph pattern

diffusion kernel for accurate graph classification. In Proceedings of the 8th

International Workshop on Data Mining in Bioinformatics, 2008.

[43] Aaron Smalter, Jun Huan, and Gerald Lushington. Gpm: A graph pattern

matching kernel with diffusion for accurate graph classification. In Proceed-

ings of the 8th IEEE International Conference on BioInformatics and Bio-

Engineering, 2008.

[44] Aaron Smalter, Jun Huan, and Gerald Lushington. Graph wavelet align-

ment kernels for drug virtual screening. In Proceedings of the 7th Annual

International Conference on Computational Systems Bioinformatics, 2008.

[45] Aaron Smalter, Jun Huan, and Gerald Lushington. Structure-based pattern

mining for chemical compound classification. In Proceedings of the 6th Asia

Pacific Bioinformatics Conference, 2008.

[46] Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos.

Parameter-free mining of large time-evolving graphs. In SIGKDD, 2007.

[47] V. Svetnik, C. Tong A. Liaw, J. C. Culberson, R. P. Sheridan, and B. P.

Feuston. Random forest: A classification and regression tool for compound

classification and qsar modeling. Journal of chemical information and com-

puter sciences, 43, 2003.

[48] Stefan Wrobel Tamas Horvath, Thomas Gartner. Cyclic pattern kernels for

predictive graph mining. SIGKDD, 2004.

[49] Nicola Tolliday, Paul A. Clemons, Paul Ferraiolo, Angela N. Koehler, Timo-

thy A. Lewis, Xiaohua Li, Stuart L. Schreiber, Daniela S. Gerhard, and Scott

90

Eliasof. Small molecules, big players: the national cancer institute’s initiative

for chemical genetics. Cancer Research, 66:8935–42, 2006.

[50] Hanghang Tong, Yehuda Koren, , and Christos Faloutsos. Fast direction-

aware proximity for graph mining. In SIGKDD, 2007.

[51] V. Vapnik. Statistical Learning Theory. John Wiley, 1998.

[52] Nikil Wale, Ian Watson, , and George Karypis. Comparison of descriptor

spaces for chemical compound retrieval and classification. Knowledge and

Information Systems, 2007.

[53] M. Wessel, P. Jurs, J. Tolan, and S. Muskal. Prediction of human intesti-

nal absorption of drug compounds from molecular structure. J. Chem. Inf.

Comput. Sci., 38(4):726–735, 1998.

[54] Jason Weston, Rui Kuang, Christina Leslie, and William Stafford Noble. Pro-

tein ranking by semi-supervised network propagation. BMC Bioinformatics,

2006.

[55] David Williams, Jun Huan, and Wei Wang. Graph database indexing using

structured graph decomposition. In in Proceedings of the 23rd IEEE Inter-

national Conference on Data Engineering (ICDE), 2007.

[56] I. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Francisco, CA, 2nd edition edition, 2005.

[57] Y. Xue, H. Li, C. Y. Ung, C. W. Yap, and Y. Z. Chen. Classification of

a diverse set of tetrahymena pyriformis toxicity chemical compounds from

molecular descriptors by statistical learning methods. Chem. Res. Toxicol.,

19 (8), 2006.

91

[58] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In

Proc. International Conference on Data Mining’02, pages 721–724, 2002.

[59] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative

frequent structure analysis. In ACM Transactions on Database Systems

(TODS), 2005.

[60] Mohammed J. Zaki and Charu C. Aggarwal. Xrules: An effective structural

classifier for xml data. Machine Learning Journal special issue on Statistical

Relational Learning and Multi-Relational Data Mining, 62, No. 1-2:137–170,

2006.

[61] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. Coherent

closed quasi-clique discovery from large dense graph databases. In SIGKDD,

2006.

[62] D. Zhou, J. Huang, and B. Schöolkopf. Learning from labeled and unlabeled

data on a directed graph. Proceedings of the 22nd International Conference

on Machine Learning, 2005.

92

