6,122 research outputs found

    When are abrupt onsets found efficiently in complex visual search? : evidence from multi-element asynchronous dynamic search

    Get PDF
    Previous work has found that search principles derived from simple visual search tasks do not necessarily apply to more complex search tasks. Using a Multielement Asynchronous Dynamic (MAD) visual search task, in which high numbers of stimuli could either be moving, stationary, and/or changing in luminance, Kunar and Watson (M. A Kunar & D. G. Watson, 2011, Visual search in a Multi-element Asynchronous Dynamic (MAD) world, Journal of Experimental Psychology: Human Perception and Performance, Vol 37, pp. 1017-1031) found that, unlike previous work, participants missed a higher number of targets with search for moving items worse than for static items and that there was no benefit for finding targets that showed a luminance onset. In the present research, we investigated why luminance onsets do not capture attention and whether luminance onsets can ever capture attention in MAD search. Experiment 1 investigated whether blinking stimuli, which abruptly offset for 100 ms before reonsetting-conditions known to produce attentional capture in simpler visual search tasks-captured attention in MAD search, and Experiments 2-5 investigated whether giving participants advance knowledge and preexposure to the blinking cues produced efficient search for blinking targets. Experiments 6-9 investigated whether unique luminance onsets, unique motion, or unique stationary items captured attention. The results found that luminance onsets captured attention in MAD search only when they were unique, consistent with a top-down unique feature hypothesis. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

    When are abrupt onsets found efficiently in complex visual search? : evidence from multi-element asynchronous dynamic search

    Get PDF
    Previous work has found that search principles derived from simple visual search tasks do not necessarily apply to more complex search tasks. Using a Multielement Asynchronous Dynamic (MAD) visual search task, in which high numbers of stimuli could either be moving, stationary, and/or changing in luminance, Kunar and Watson (M. A Kunar & D. G. Watson, 2011, Visual search in a Multi-element Asynchronous Dynamic (MAD) world, Journal of Experimental Psychology: Human Perception and Performance, Vol 37, pp. 1017-1031) found that, unlike previous work, participants missed a higher number of targets with search for moving items worse than for static items and that there was no benefit for finding targets that showed a luminance onset. In the present research, we investigated why luminance onsets do not capture attention and whether luminance onsets can ever capture attention in MAD search. Experiment 1 investigated whether blinking stimuli, which abruptly offset for 100 ms before reonsetting-conditions known to produce attentional capture in simpler visual search tasks-captured attention in MAD search, and Experiments 2-5 investigated whether giving participants advance knowledge and preexposure to the blinking cues produced efficient search for blinking targets. Experiments 6-9 investigated whether unique luminance onsets, unique motion, or unique stationary items captured attention. The results found that luminance onsets captured attention in MAD search only when they were unique, consistent with a top-down unique feature hypothesis. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

    What has been missed for predicting human attention in viewing driving clips?

    Get PDF
    Recent research progress on the topic of human visual attention allocation in scene perception and its simulation is based mainly on studies with static images. However, natural vision requires us to extract visual information that constantly changes due to egocentric movements or dynamics of the world. It is unclear to what extent spatio-temporal regularity, an inherent regularity in dynamic vision, affects human gaze distribution and saliency computation in visual attention models. In this free-viewing eye-tracking study we manipulated the spatio-temporal regularity of traffic videos by presenting them in normal video sequence, reversed video sequence, normal frame sequence, and randomised frame sequence. The recorded human gaze allocation was then used as the ‘ground truth’ to examine the predictive ability of a number of state-of-the-art visual attention models. The analysis revealed high inter-observer agreement across individual human observers, but all the tested attention models performed significantly worse than humans. The inferior predictability of the models was evident from indistinguishable gaze prediction irrespective of stimuli presentation sequence, and weak central fixation bias. Our findings suggest that a realistic visual attention model for the processing of dynamic scenes should incorporate human visual sensitivity with spatio-temporal regularity and central fixation bias

    Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1

    Get PDF
    Previous studies in that line suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections in the visual system with a neurodynamic network of firing-rate neurons. Early subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search conditions. Results show that our model outpeforms other biologically-inpired models of saliency prediction as well as to predict visual saccade sequences during free viewing. We also show how temporal and spatial characteristics of inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) predict attention at distinct image contexts.Comment: 32 pages, 19 figure

    Looking For Answers: A Usability Study of Online Finding Aid Navigation

    Get PDF
    In a practical and user-centered model for online archival description, what navigational features are effective, efficient, and user-valued components for an academic archives’ online finding aid? Using Princeton University’s finding aid website as a prototype, this research study collected quantitative as well as qualitative data from 10 relatively inexperienced online finding aid users as they interacted with and reacted to the finding aid interface. Major navigational difficulties experienced by users included ambiguous and/or unintuitive labeling, unclear relationships between tabs, and insufficient visual cues for certain navigational features. In contrast, user-valued navigational aids included centralized hyperlinked content, nested and hierarchical content tabs, and a collection-level search bar. The article concludes with 10 pragmatic guidelines for archival professionals trying to solve the ongoing puzzle of online finding aid usability

    Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo"

    Get PDF
    Waterhouse E, Watts R, BlÀsing B. Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo". Frontiers in Human Neuroscience. 2014;8:812.Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models

    When awareness gets in the way : reactivation aversion effects resolve the generality/specificity paradox in sensorimotor interference tasks

    Get PDF
    Interference tasks combining different distractor types usually find that between-trial adaptations (congruency sequence effects [CSEs]) do not interact with each other, suggesting that sensorimotor control is domain-specific. However, within each trial, different distractor types often do interact, suggesting that control is domain-general. The present study presents a solution to this apparent paradox. In 3 experiments, testing 130 participants in total, we (a) confirm the simultaneous presence of between-trial domain-specific (noninteracting) CSEs and within-trial “domain-general” interactions in a fully factorial hybrid prime-Simon design free of repetition or contingency confounds; (b) demonstrate that the within-trial interaction occurs with supraliminal, but not with subliminal primes; and (c) show that it is disproportionately enlarged in older adults. Our findings suggest that whereas interference (priming and Simon) effects and CSEs reflect direct sensorimotor control, the within-trial interaction does not reflect sensorimotor control but “confusion” at higher-level processing stages (reactivation aversion effect [RAE])
    • 

    corecore