56 research outputs found

    Soil Moisture Workshop

    Get PDF
    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report

    Molecular Modeling of Membrane Embedded Proteins

    Get PDF
    Over the past years, molecular modeling and simulation techniques have had a major impact on experimental life sciences. They are capable of providing accurate insight into microscopic mechanisms, which are usually difficult to investigate experimentally. Moreover, the integration of experimental data with molecular modeling appears to be a promising strategy to better understand complex biological processes. In this thesis, molecular dynamics simulation has been used in combination with experimental data to investigate two transmembrane proteins: (i) the bacterial chemoreceptor PhoQ and (ii) the Amyloid Precursor Protein (APP). (i) Bacterial two-component system PhoQ and bacterial membranes. Two-component systems (TCSs) are signaling complexes essential for bacterial survival and virulence. PhoQ is the histidine kinase chemoreceptor of the PhoQ-PhoP tandem machine that detects the concentration of cationic species at the inner membrane of Gram-negative bacteria. A full understanding of the PhoQ signal transduction mechanism is currently hindered by the lack of a complete atomistic structure. In this thesis project, the first structural model of the transmembrane (TM) portion of PhoQ from Escherichia coli was assembled, by using molecular simulations integrated with cross-linking disulfide scanning data. Its structural and dynamic features induce a concerted displacement of the TM helices at the periplasmic side, which modulates a rotation at the cytoplasmic end. This supports the idea that signal transduction is promoted through a combination of scissoring and rotational movements of the TM helices. Knowledge of this complex mechanism is essential in order to understand how the chemical stimuli sensed by the periplasmic sensor domain trigger, via the relay of the HAMP domain, the histidine auto-phosphorylation and kinase/phosphatase activity at the cytoplasmic end. The PhoQ sensor domain lies in close proximity to the membrane. Interaction with anionic lipids, such as phosphophatidylglycerols (PG) and cardiolipins (CL), are thought to play a key role in PhoQ activity. Present in bacterial and mitochondrial membranes, cardiolipins have a unique dimeric structure, which carries up to two charges, i.e. one per phosphate group, and under physiological conditions, can be unprotonated or singly protonated. Exhaustive models and characterization of cardiolipins are to-date scarce; therefore an ab initio parameterization of cardiolipin species for molecular simulation consistent with commonly used force fields is proposed here. Molecular dynamics (MD) simulations based on these models indicate a protonation-dependent lipid packing. A noteworthy interaction with solvating mono- and divalent cations is also observed. The proposed models will contribute to the biophysical and biochemical characterizations of bacterial and mitochondrial membranes and membrane-embedded proteins. (ii) Structural and dynamic properties of the Amyloid Precursor Protein. The Amyloid Precursor Protein (APP) is a type I membrane glycoprotein present at the neuronal synapsis. The proteolytic cleavage of its C-terminal segment produces amyloid-β (Aβ) peptides of different lengths, the deposition of which is an early indicator of Alzheimer"s disease (AD). Recently, the backbone structure of the APP transmembrane (TM) domain in detergent micelles was determined by nuclear magnetic resonance (NMR, independently by two different experimental groups). The TM conformations of these two structures are however markedly different. One is characterized by a highly kinked α-helix, whereas the other is mainly straight. Molecular dynamics simulations showed that the APP TM region is highly flexible and its secondary structure is influenced by the surrounding lipid environment. The size of the embedding detergent micelles strongly affects the conformation of the APP α-helix, with solvation being the main driving force for the development of a helical curvature. Once embedded in a membrane bilayer, APP systematically prefers a straight helical conformation. This is also confirmed when analyzing in silico the atomistic APP population observed in double electron-electron resonance (DEER) spectroscopy. In summary, the APP transmembrane domain is highly flexible due to the presence of glycine residues and can readily respond to the lipid environment, a property that might be critical for proteolytic processing by γ-secretase enzymes. The presented thesis work clearly shows how molecular simulations and their interplay with available experimental input can help advance the understanding of the mechanism of complex biological systems and processes on a molecular scale. These results, in particular, go well beyond the current understanding of the functioning of two transmembrane proteins relevant for human health. Furthermore, the computational approaches and procedures developed in these projects will hopefully promote novel integrated strategies for investigating biological systems

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Topics in Neuromodulation Treatment

    Get PDF
    "Topics in Neuromodulation Treatment" is a book that invites to the reader to make an update in this important and well-defined area involved in the Neuroscience world. The book pays attention in some aspects of the electrical therapy and also in the drug delivery management of several neurological illnesses including the classic ones like epilepsy, Parkinson's disease, pain, and other indications more recently incorporated to this important tool like bladder incontinency, heart ischemia and stroke. The manuscript is dedicated not only to the expert, but also to the scientist that begins in this amazing field. The authors are physicians of different specialties and they guarantee the clinical expertise to provide to the reader the best guide to treat the patient

    Development of an LC-MS/MS method for the detection of traces of peanut allergens in chili pepper

    Get PDF
    The recent detection of nuts (including peanut) in spices across the globe has led to enormous recalls of several spices and food products in the last two years. The lack of validated detection methods specific for spices makes it difficult to assess allergen presence at trace levels. Because of the urgent need for confirmation of possible peanut presence in chili peppers, an LC-MS/MS method was optimized and developed for this particular food matrix. Although several studies optimized LC-MS detection strategies specific for peanuts, the presence of complex components in the spices (e.g., phenolic components) makes method optimization and validation necessarily. Focus was laid on validation of the method with real incurred chili peppers (whereby a known amount of peanut is added) at low concentrations, to deal with possible matrix interferences. LC-MS/MS proves to be a good alternative to the currently most applied methods (ELISA and RT-PCR) and can be used as a complementary method of analysis when results are unclear. Peanut marker peptides were selected based on their abundancy in digested incurred chili peppers. The limit of detection was determined to be 24 ppm (mg peanut/kg), a level whereby the risk for potential allergic reactions is zero, considering the typical portion size of spices. The chili pepper powder under investigation proved to contain low levels of peanuts after LC-MS/MS, ELISA, and RT-PCR testing
    • …
    corecore