11,149 research outputs found

    A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods

    Full text link
    We investigate the connections between several recent methods for the discretization of anisotropic heterogeneous diffusion operators on general grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite Volume scheme and the Mixed Finite Volume scheme are in fact identical up to some slight generalizations. As a consequence, some of the mathematical results obtained for each of the method (such as convergence properties or error estimates) may be extended to the unified common framework. We then focus on the relationships between this unified method and nonconforming Finite Element schemes or Mixed Finite Element schemes, obtaining as a by-product an explicit lifting operator close to the ones used in some theoretical studies of the Mimetic Finite Difference scheme. We also show that for isotropic operators, on particular meshes such as triangular meshes with acute angles, the unified method boils down to the well-known efficient two-point flux Finite Volume scheme

    A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems

    Get PDF
    We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented

    Numerical analysis for the pure Neumann control problem using the gradient discretisation method

    Full text link
    The article discusses the gradient discretisation method (GDM) for distributed optimal control problems governed by diffusion equation with pure Neumann boundary condition. Using the GDM framework enables to develop an analysis that directly applies to a wide range of numerical schemes, from conforming and non-conforming finite elements, to mixed finite elements, to finite volumes and mimetic finite differences methods. Optimal order error estimates for state, adjoint and control variables for low order schemes are derived under standard regularity assumptions. A novel projection relation between the optimal control and the adjoint variable allows the proof of a super-convergence result for post-processed control. Numerical experiments performed using a modified active set strategy algorithm for conforming, nonconforming and mimetic finite difference methods confirm the theoretical rates of convergence

    Numerical results for mimetic discretization of Reissner-Mindlin plate problems

    Full text link
    A low-order mimetic finite difference (MFD) method for Reissner-Mindlin plate problems is considered. Together with the source problem, the free vibration and the buckling problems are investigated. Full details about the scheme implementation are provided, and the numerical results on several different types of meshes are reported

    The curved Mimetic Finite Difference method: allowing grids with curved faces

    Full text link
    We present a new mimetic finite difference method for diffusion problems that converges on grids with \textit{curved} (i.e., non-planar) faces. Crucially, it gives a symmetric discrete problem that uses only one discrete unknown per curved face. The principle at the core of our construction is to abandon the standard definition of local consistency of mimetic finite difference methods. Instead, we exploit the novel and global concept of P0P_{0}-consistency. Numerical examples confirm the consistency and the optimal convergence rate of the proposed mimetic method for cubic grids with randomly perturbed nodes as well as grids with curved boundaries.Comment: Accepted manuscrip

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201

    A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation

    Get PDF
        n this article a new mimetic finite difference method to solve unsteady diffusionequation is presented. It uses Crank-Nicolson scheme to obtain time approximationsand second order mimetic discretizations for gradient and divergence operators inspace. The convergence of this new method is analyzed using Lax-Friedrichs equiv-alence theorem. This analysis is developed for one dimensional case. In addition tothe analytical work, we provide experimental evidences that mimetic Crank-Nicolsonscheme is better than standard finite difference because it achieves quadratic conver-gence rates, second order truncation errors and better approximations to the exactsolution.Keywords: mimetic scheme, finite difference method, unsteady diffusion equation,Lax-Friedrichs equivalence theorem

    A Stable Mimetic Finite-Difference Method for Convection-Dominated Diffusion Equations

    Full text link
    Convection-diffusion equations arise in a variety of applications such as particle transport, electromagnetics, and magnetohydrodynamics. Simulation of the convection-dominated regime for these problems, even with high-fidelity techniques, is particularly challenging due to the presence of sharp boundary layers and shocks causing jumps and discontinuities in the solution, and numerical issues such as loss of the maximum principle in the discretization. These complications cause instabilities, admitting large oscillations in the numerical solution when using traditional methods. Drawing connections to the simplex-averaged finite-element method (S. Wu and J. Xu, 2020), this paper develops a mimetic finite-difference (MFD) discretization using exponentially-averaged coefficients to overcome instability of the numerical solution as the diffusion coefficient approaches zero. The finite-element framework allows for transparent analysis of the MFD, such as proving well-posedness and deriving error estimates. Numerical tests are presented confirming the stability of the method and verifying the error estimates
    corecore