592 research outputs found

    Characterisation of propagation in 60 GHz radio channels (invited)

    Get PDF
    Narrowband as well as wideband measurements have been performed in various indoor and outdoor environments in order to enable the development of reliable prediction models for 60 GHz radio channels. In addition, results of deterministic modelling on the basis of geometric ray-tracing have been compared with measurement results, showing that simple ray-tracing can be used to estimate both the narrowband and wideband characteristics of a 60 GHz radio channel. This paper reviews the measurement and modelling activities performed by various research institute

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied

    Characterisation of Propagation in 60 GHz Radio Channels,"

    Get PDF
    Narrowband as well as wideband measurements ha,ve been performed in various indoor and outdoor environments in order t o enable the development of reliable prediction models for 60 GHz radio channels. In addition, results of deterministic modelling on the basis of geometric raytracing have been compared with measurement results, showing that simple ray-tracing can be used t o estimate both the narrowband and wideband characteristics of a 60 GHz radio channel. This paper reviews the measurement and modelling activities performed by various research i nst it Utes

    UWB Indoor Radio Propagation Modelling in Presence of Human Body Shadowing Using Ray Tracing Technique

    Get PDF
    This paper presents a ray-tracing method for modelingUltra Wide Bandwidth indoor propagation channels. Avalidation of the ray tracing model with our indoor measurementis also presented. Based on the validated model, the multipathchannel parameter like the fading statistics and root mean squarerms delay spread for Ultra Wide bandwidth frequencies aresimply extracted. The proposed ray-tracing method is basedon image method. This is used to predict the propagation ofUWB electromagnetic waves. First, we have obtained that thefading statistics can be well fitted by log normal distributionin static case. Second, as in realistic environment we cannotneglect the significant impact of Human Body Shadowing andother objects in motion on indoor UWB propagation channel.Hence, our proposed model allows a simulation of propagationin a dynamic indoor environment. Results of the simulation showthat this tool gives results in agreement with those reported inthe literature. Specially, the effects of people motion on temporalchannel properties. Other features of this approach also areoutlined
    corecore