1,244 research outputs found

    On the feasibility of collaborative green data center ecosystems

    Get PDF
    The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by exploiting, in concert with customers, service workloads and to reduce data centers’ carbon footprints by adopting demand-response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers and data centers can have to adopt such measures and propose a new service type and pricing scheme that is economically attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional energy savings while preserving service performance and the interests of data centers and customers.Peer ReviewedPostprint (author's final draft

    Accounting for preemption and migration costs in the calculation of hard real-time cyclic executives for MPSoCs

    Get PDF
    This work introduces a methodology to consider preemption and migration overhead in hard real-time cyclic executives on multicore architectures. The approach performs two iterative stages. The first stage takes a cyclic executive, from which the number and timing of all preemptions and migrations for every task is known. Then, it includes this overhead by updating the worst-case execution time (WCET) of the tasks. The second stage calculates a new cyclic executive considering the new WCET of tasks. The stages iterate until the preemption and migration overhead keeps constant. © 2016 IEEE

    Reallocation Problems in Scheduling

    Full text link
    In traditional on-line problems, such as scheduling, requests arrive over time, demanding available resources. As each request arrives, some resources may have to be irrevocably committed to servicing that request. In many situations, however, it may be possible or even necessary to reallocate previously allocated resources in order to satisfy a new request. This reallocation has a cost. This paper shows how to service the requests while minimizing the reallocation cost. We focus on the classic problem of scheduling jobs on a multiprocessor system. Each unit-size job has a time window in which it can be executed. Jobs are dynamically added and removed from the system. We provide an algorithm that maintains a valid schedule, as long as a sufficiently feasible schedule exists. The algorithm reschedules only a total number of O(min{log^* n, log^* Delta}) jobs for each job that is inserted or deleted from the system, where n is the number of active jobs and Delta is the size of the largest window.Comment: 9 oages, 1 table; extended abstract version to appear in SPAA 201

    REAL-TIME SCHEDULING ON ASYMMETRIC MULTIPROCESSOR PLATFORMS

    Get PDF
    Real-time scheduling analysis is crucial for time-critical systems, in which provable timing guarantees are more important than observed raw performance. Techniques for real-time scheduling analysis initially targeted uniprocessor platforms but have since evolved to encompass multiprocessor platforms. However, work directed at multiprocessors has largely focused on symmetric platforms, in which every processor is identical. Today, it is common for a multiprocessor to include heterogeneous processing elements, as this offers advantages with respect to size, weight, and power (SWaP) limitations. As a result, realizing modern real-time systems on asymmetric multiprocessor platforms is an inevitable trend. Unfortunately, principles and mechanisms regarding real-time scheduling on such platforms are relatively lacking. The goal of this dissertation is to enrich such principles and mechanisms, by bridging existing analysis for symmetric multiprocessor platforms to asymmetric ones and by developing new techniques that are unique for asymmetric multiprocessor platforms. The specific contributions are threefold. First, for a platform consisting of processors that differ with respect to processing speeds only, this dissertation shows that the preemptive global earliest-deadline-first (G-EDF) scheduler is optimal for scheduling soft real-time (SRT) task systems. Furthermore, it shows that semi-partitioned scheduling, which is a hybrid of conventional global and partitioned scheduling approaches, can be applied to optimally schedule both hard real-time (HRT) and SRT task systems. Second, on platforms that consist of processors with different functionalities, tasks that belong to different functionalities may process the same source data consecutively and therefore have producer/consumer relationships among them, which are represented by directed acyclic graphs (DAGs). End-to-end response-time bounds for such DAGs are derived in this dissertation under a G-EDF-based scheduling approach, and it is shown that such bounds can be improved by a linear-programming-based deadline-setting technique. Third, processor virtualization can lead a symmetric physical platform to be asymmetric. In fact, for a designated virtual-platform capacity, there exist an infinite number of allocation schemes for virtual processors and a choice must be made. In this dissertation, a particular asymmetric virtual-processor allocation scheme, called minimum-parallelism (MP) form, is shown to dominate all other schemes including symmetric ones.Doctor of Philosoph

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    Migration and Informal Insurance

    Get PDF
    We document that an experimental intervention offering transport subsidies for poor rural households to migrate seasonally in Bangladesh improved risk sharing. A theoretical model of endogenous migration and risk sharing shows that the effect of subsidizing migration depends on the underlying economic environment. If migration is risky, a temporary subsidy can induce an improvement in risk sharing and enable profitable migration. We estimate the model and find that the migration experiment increased welfare by 12.9%. Counterfactual analysis suggests that a permanent, rather than temporary, decline in migration costs in the same environment would result in a reduction in risk sharing

    Dynamic Storage Provisioning with SLO Guarantees

    Get PDF
    Static provisioning of storage resources may lead to over-provisioning of resources, which increases costs, or under-provisioning, which runs the risk of violating application-level QoS goals. Toward this end, virtualization technologies have made automated provisioning of storage resources easier allowing more effective management of the resources. In this work, we present an approach that suggests a series of dynamic provisioning decisions to meet the I/O demands of a time-varying workload while avoiding unnecessary costs and Service Level Objective (SLO) violations. We also do a case-study to analyze the practical feasibility of dynamic provisioning and the associated performance effects in a virtualized environment, which forms the basis of our approach. Our approach is able to suggest the optimal provisioning decisions, for a given workload, that minimize cost and meet the SLO. We evaluate the approach using workload data obtained from real systems to demonstrate its cost-effectiveness, sensitivity to various system parameters, and runtime feasibility for use in real systems
    corecore