2,395 research outputs found

    The Role of Probe Attenuation in the Time-Domain Reflectometry Characterization of Dielectrics

    Get PDF
    The influence of the measurement setup on the estimation of dielectric permittivity spectra from time-domain reflectometry (TDR) responses is investigated. The analysis is based on a simplified model of the TDR measurement setup, where an ideal voltage step is applied to an ideal transmission line that models the probe. The main result of this analysis is that the propagation in the probe has an inherent band limiting effect, and the estimation of the high-frequency permittivity parameters is well conditioned only if the wave attenuation for a round trip propagation in the dielectric sample is small. This is a general result, holding for most permittivity model and estimation scheme. It has been verified on real estimation problems by estimating the permittivity of liquid dielectrics and soil samples via an high-order model of the TDR setup and a parametric inversion approac

    The dielectric properties of soil-water mixtures at microwave frequencies

    Get PDF
    Recent measurements on the dielectric constants of soil-water mixtures show the existence of two frequency regions in which the dielectric behavior of these mixtures was quite different. At the frequencies of 1.4 GHz to 5 GHz, there were strong evidences that the variations of the dielectric (epsilon) with water content (W) depended on soil type. While the real part of epsilon for sandy soils rose rapidly with the increase in W, epsilon for the high-clay content soils rose only slowly with W. As a consequence, epsilon was generally higher for the sandy soils than for the high-clay content soils at a given W. On the other hand, most of the measurements at frequencies 1 GHz indicated the increase of epsilon with W independent of soil types. At a given W, epsilon' (sandy soil) approximately equals epsilon (high-clay content soil) within the precision of the measurements. These observational features can be satisfactorily interpreted in terms of a simple dielectric relaxation model, with an appropriate choice of the mean relaxation frequency f(m) and the range of the activation energy (beta). It was found that smaller f(m) and larger beta were required for the high-clay content soils than the sandy soils in order to be consistent with the measured data

    An empirical model for the complex dielectric permittivity of soils as a function of water content

    Get PDF
    The recent measurements on the dielectric properties of soils shows that the variation of dielectric constant with moisture content depends on soil types. The observed dielectric constant increases only slowly with moisture content up to a transition point. Beyond the transition it increases rapidly with moisture content. The moisture value of transition region was found to be higher for high clay content soils than for sandy soils. Many mixing formulas were compared with, and were found incompatible with, the measured dielectric variations of soil-water mixtures. A simple empirical model was proposed to describe the dielectric behavior of ths soil-water mixtures. The relationship between transition moisture and wilting point provides a means of estimating soil dielectric properties on the basis of texture information

    A multi-frequency measurement of thermal microwave emission from soils: The effects of soil texture and surface roughness

    Get PDF
    An experiment on remote sensing of soil moisture content was conducted over bare fields with microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz during July - September of 1981. Three bare fields with different surface roughnesses and soil textures were prepared for the experiment. Ground truth acquisition of soil temperatures and moisture contents for 5 layers down to the depths of 15 cm was made concurrently with radiometric measurements. The experimental results show that the effect of surface roughness is to increase the soils' brightness temperature and to reduce the slope of regression between brightness temperature and moisture content. The slopes of regression for soils with different textures are found to be comparable, and the effect of soil texture is reflected in the difference of regression line intercepts at brightness temperature axis. The result is consistent with laboratory measurement of soils' dielectric permittivity. Measurements on wet smooth bare fields give lower brightness temperatures at 5 GHz than at 1.4 GHz

    Dielectric constants of soils at microwave frequencies-2

    Get PDF
    The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture
    corecore