19,990 research outputs found

    Introducing a new technology to enhance community sustainability: An investigation of the possibilities of sun spots

    Get PDF
    The introduction of the Sun SPOT, Small Programmable Object Technology, developed by Sun Microsystems has been depicted as providing a revolutionary change in cyber physical interaction. Based on Sun Java Micro Edition (ME), this sensor technology has the potential to be used across a number of discipline areas to interface with systems, the environment and biological domains. This paper will outline the potential of Sun SPOTs to enhance community sustainability. An action based research project was carried out to investigate the potential uses of these technologies and develop a prototype system as a proof of concept. The research will compare Sun SPOTs with similar technologies, provide an assessment of the technology, and propose a number of possible implementations of the technology to enhance community sustainability

    Quantum theory: the role of microsystems and macrosystems

    Full text link
    We stress the notion of statistical experiment, which is mandatory for quantum mechanics, and recall Ludwig's foundation of quantum mechanics, which provides the most general framework to deal with statistical experiments giving evidence for particles. In this approach particles appear as interaction carriers between preparation and registration apparatuses. We further briefly point out the more modern and versatile formalism of quantum theory, stressing the relevance of probabilistic concepts in its formulation. At last we discuss the role of macrosystems, focusing on quantum field theory for their description and introducing for them objective state parameters.Comment: 12 pages. For special issue of J.Phys.A, "The Quantum Universe", on the occasion of 70th birthday of Professor Giancarlo Ghirard

    Costs and benefits of multiple levels of models in MDA development

    Get PDF
    In Model-Driven Architecture (MDA) development, models of a distributed application are carefully defined so as to remain stable in face of changes in technology platforms. As we have argued previously in [1, 3], models in MDA can be organized into different levels of platformindependence. In this paper, we analyze the costs and benefits of maintaining separate levels of models with transformations between these levels. We argue that the number of levels of models and the degree of automation of transformations between these levels depend on a number of design goals to be balanced, including those of maximizing the efficiency of the design process and maximizing the reusability of models and transformations

    Slow-light enhanced light-matter interactions with applications to gas sensing

    Full text link
    Optical gas detection in microsystems is limited by the short micron scale optical path length available. Recently, the concept of slow-light enhanced absorption has been proposed as a route to compensate for the short path length in miniaturized absorption cells. We extend the previous perturbation theory to the case of a Bragg stack infiltrated by a spectrally strongly dispersive gas with a narrow and distinct absorption peak. We show that considerable signal enhancement is possible. As an example, we consider a Bragg stack consisting of PMMA infiltrated by O2. Here, the required optical path length for visible to near-infrared detection (~760 nm) can be reduced by at least a factor of 10^2, making a path length of 1 mm feasible. By using this technique, optical gas detection can potentially be made possible in microsystems

    Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction

    Get PDF
    The meaning of statistical experiments with single microsystems in quantum mechanics is discussed and a general model in the framework of non-relativistic quantum field theory is proposed, to describe both coherent and incoherent interaction of a single microsystem with matter. Compactly developing the calculations with superoperators, it is shown that the introduction of a time scale, linked to irreversibility of the reduced dynamics, directly leads to a dynamical semigroup expressed in terms of quantities typical of scattering theory. Its generator consists of two terms, the first linked to a coherent wavelike behaviour, the second related to an interaction having a measuring character, possibly connected to events the microsystem produces propagating inside matter. In case these events breed a measurement, an explicit realization of some concepts of modern quantum mechanics ("effects" and "operations") arises. The relevance of this description to a recent debate questioning the validity of ordinary quantum mechanics to account for such experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure

    Sensorless action-reaction-based residual vibration suppression for multi-degree-of-freedom flexible systems

    Get PDF
    This paper demonstrates the feasibility of controlling motion and vibration of a class of flexible systems with inaccessible or unknown outputs through measurements taken from their actuators which are used as single platforms for measurements, whereas flexible dynamical systems are kept free from any attached sensors. Based on the action reaction law of dynamics, the well-known disturbance observer is used to determine the incident reaction forces from these dynamical systems on the interface planes with their actuators. Reaction forces are considered as feedback-like signals that can be used as alternatives to the inaccessible system outputs. The sensorless action reaction based motion and vibration control technique is implemented on a flexible system with finite modes and all results are verified experimentally
    • …
    corecore