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Abstract Gaseous flows in microsystems have attracted considerable attention in fluid dynamic communities 
over the last few years. When the size of the device is in the range of microns, the molecular mean free path  
becomes comparable with the device size, and the details of the molecular interactions need to be taken into 
account. The proper description of such microflows requires the consideration of the velocity distribution  
function  of  the  molecules  and  kinetic  equations.  The  scope  of  the  present  paper  is  to  discuss  the  
determination of the behavior of pressure driven rarefied gas flows in microchannels at the kinetic level. As a  
new application of the methodology, preliminary results are presented for pressure driven flows of single 
gases through long rectangular tapered microchannels, which have constant widths but varying depths along 
the axis of the channel. The kinetic calculation is based on the solution of the linearized Bhatnagar-Gross-
Krook (BGK) equation and refers to the determination of the mass flow rate through the channel and the 
axial distribution of the pressure. The BGK equation is solved by the discrete velocity method. It is shown 
that  the  mass  flow  rate  exhibits  the  diodicity  effect,  which  means  that  the  flow  rate  depends  on  the 
orientation of the channel. If the gas flows from the larger cross section towards the smaller one, the flow 
rate is larger than in the opposite situation. The pressure profile strongly varies near the small cross section, 
and it has a quite different character than in the case of channels with uniform cross sections. The tapered  
microchannel might be useful for separating the different gaseous components in engineering applications.
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1. Introduction

Over the last few years, flows of rarefied gases 
in  microsystems  have  attracted  significant 
scientific  interest,  which  is  well  justified  by 
the  appearance  of  gaseous  micro  and 
nanoflows  [1,2].  The  Knudsen  number,  the 
ratio of the molecular mean free path and the 
characteristic size of the flow, is the relevant 
quantity to classify the flows of rarefied gases. 
In microsystems, the Knudsen number can be 
in  a  wide range from the  hydrodynamic and 
slip regimes to the transition region. When the 
mean  free  path  is  comparable  with  the 
characteristic  length,  the  proper  description 
should be based on the kinetic  level,  i.e.  the 
velocity  distribution  function  and  kinetic 
equations [3].

Although  considerable  effort  has  been 
made  to  solve  kinetic  equations  for  rarefied 
gases, the numerical modeling of these flows 

is  still  challenging.  In  micro  and nanoflows, 
typically  the  flow  is  through  micro  or 
nanochannels.  Important  geometrical 
parameters of the channel consist of its cross 
section  shape,  with  the  relevant  dimensions, 
and the length of the channel. There are major 
differences  whether  the length is  comparable 
with  the  characteristic  cross  sectional 
dimension,  or the length is much larger  than 
this dimension. In the former case, the channel 
is considered short, the speed of the gas can be 
comparable with its  average molecular  speed 
and  the  description  requires  non-linear 
equations.  However,  in  typical  microfluidic 
applications,  the  channel  is  long.  In  this 
situation,  the  speed  of  the  gas  is  small 
compared to the mean molecular speed and the 
flow  can  be  described  by  linear  kinetic 
equations.  Another  important  feature  of  long 
channels is that the flow is only in the axial 
direction  and the effects  of the channel  inlet 
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and outlet can be neglected.
Significant  work  has  been  devoted  to 

model single gas flows through long channels 
on  the  basis  of  linearized  kinetic  equations. 
For  such  flows,  the  modeling  of  the  flow 
consists  of  two  steps.  First,  the  local  flow 
problem in the cross section sheet, where the 
gas  is  subject  to  the  local  driving  forces,  is 
solved.  Since  the  flow is  linear,  an arbitrary 
flow can be  obtained  by the  composition  of 
basic flows driven by unity driving forces. The 
local  flow  problem  depends  on  the  cross 
section sheet and the local Knudsen number or 
the  rarefaction  parameter,  which  is 
proportional with the inverse of the former and 
typically  used  in  rarefied  gas  dynamics  to 
describe the flow. After the local flow problem 
is solved, the global flow can be obtained in a 
second  step  by  the  consideration  of  the 
conservation of the mass of the gas.

The  flow  can  be  described  by  linearized 
kinetic models, such as the Bhatnagar-Gross-
Krook  (BGK)  or  Shakov  models,  or  the 
original  Boltzmann  equation.  The  usefulness 
of  kinetic  models  is  that  they  have  simpler 
mathematical  structures  than  the  original 
Boltzmann equation. The simplicity results in 
an  easier  mathematical  solution.  Kinetic 
equations  are  integro-differential.  Their 
analytical solution exists only in special cases, 
and  typically,  they  need  to  be  solved 
numerically.

The numerical methods for the solution of 
kinetic equations can be either deterministic or 
probabilistic.  Among  the  deterministic 
approaches, the discrete velocity method is the 
most common one. In this case, the molecular 
velocity,  spatial  (and  temporal)  spaces  are 
discretized. The differential operators and the 
integrals  are  approximated  by  finite 
differences  and  quadratures.  The  resulting 
discrete  equations  are  then  solved 
computationally.  For  istothermal  pressure 
driven  flows,  the  BGK  kinetic  equation  has 
been  solved  by  the  discrete  velocity  method 
for single gas flows through uniform channels 
with  rectangular  [4],  circular  [5,6],  elliptical 
[7],  triangular  [8,9] or  trapezoidal  [10]  cross 
sections.

Among  the  probabilistic  approaches,  the 

Direct Simulation Monte Carlo (DSMC) is the 
most popular one [11]. In this situation, the gas 
is modeled by the collection of a large amount 
of test particles, which mimic the real motion 
of molecules in the considered geometry. The 
kinetic  equation  is  solved  by  the  splitting 
approach. In the streaming step, the movement 
of  the  molecules  is  simulated,  while  in  the 
collision  step,  the  molecular  interactions  are 
modeled  in  a  probabilistic  manner.  The 
macroscopic  moments  are  obtained  as 
averages. The DSMC is especially well-suited 
for high-speed flows, when the signal to noise 
ratio is relatively large. For low-speed flows, 
which are typical in microfluidic applications, 
the DSMC is not suitable since the simulation 
requires very long time. For low-speed flows, 
the  recently  developed  low-variance  or 
variance-reduced  DSMC  can  be  used 
[12,13,14].

Previous  works  have  mainly  referred  to 
flows  through  a  uniform  single  channel. 
However,  in  applications,  other,  more 
complicated flow configurations can exist. For 
example, the channels are often connected into 
a  network.  In  this  case,  the  challenge  is  to 
determine the flow by considering all initially 
unknown boundary conditions at the inlet and 
the  outlet  of  the  channels.  The  problem has 
recently  been  solved for  the  general  case  of 
gaseous  mixtures  in  the  whole  range  of  the 
rarefaction [15].  Another interesting situation 
is when the channel is still long, but the cross 
section  is  not  uniform.  Such  a  flow 
configuration has not been investigated in the 
literature  at  the  kinetic  level  with  full 
complexity. When the channel has rectangular 
cross  section  shape,  but  its  particular 
dimensions  slowly  vary  along  the  axis,  the 
channel is referred as tapered.

The  scope  of  the  paper  is  to  discuss  the 
kinetic  calculation  of  isothermal  single  gas 
flows  in  long  rectangular  channels  with 
varying  cross  sections.  The  theoretical  and 
numerical  treatments  used  in  the  associated 
kinetic  calculation  are presented.  Preliminary 
results  in terms of the flow rates and typical 
profiles  of  the  pressure  and  rarefaction 
parameter  along  the  axis  of  the  channel  are 
delivered and commented on.
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2. Statement of the problem

Isothermal  flow  of  a  rarefied  gas  in  a  long 
channel  is  considered.  The  channel  axis  lies 
along  the  z' coordinate  direction,  while  its 
cross section is in the ( x',y' ) coordinate sheet. 
The length of the channel  is  denoted by  L . 
The channel has rectangular cross section. It is 
assumed  that  the  width  of  channel,  W ,  is 
constant,  but  its  height  is  varying  along  the 
axis  H=H ( z' ) .  The  relative  variance  of  the 
height is much smaller than unity

dH
dz'

≪1. (1)

The  flow  is  characterized  by  the  local 
rarefaction parameter

δ=
Pl
μv0

, (2)

where  P is  the  pressure,  μ is  the  viscosity, 
v0=√2kB T /m is  the  characteristic  speed  of 
the molecules and  l=H if  H≤W and  l=W  
otherwise.  As it  can be seen,  l is defined as 
the  smallest  side  of  the  rectangular  cross 
section and plays the role of the relevant local 
spatial  length  scale.  In  the  definition  of  the 
characteristic  speed,  k B ,T,m are  the 
Boltzmann  constant,  the temperature  and the 
molecular  mass  of  the  gas.  The  Knudsen 
number is also introduced by Kn=√π /(2δ ) .

The pressure and the rarefaction parameter 
at the inlet (A) and the outlet (B) are denoted 
by  PA ,PB and  δ A ,δB .  It  is  supposed  that 
PA >PB ;  hence,  the  flow  is  from  the  inlet 

towards the outlet.
The main interest of the present work is in 

the mass flow rate defined by

Ṁ=∫ ρ u' z dA, (3)

where ρ,u' z are the local mass density and the 
axial  velocity  of the gas,  and  A denotes  the 
cross  section  of  the  channel.  The  goal  is  to 
determine  the  flow  rate  and  the  axial 
distributions of the pressure and the rarefaction 
parameter for specific flow configurations.

3. Method of solution

Since the channel is long and the assumption 
of Eq. (1) is hold, the solution of the problem 
can  be  divided  into  two stages.  Locally,  the 
flow  can  be  considered  along  the  axial 
direction and the transverse velocities can be 
neglected.  It  is  driven  by  the  local  axial 
pressure gradient. This local flow problem is 
solved by using kinetic description. After the 
local flow is known, the global flow behavior 
can  be  deduced  by  the  consideration  of  the 
conservation  of  the  mass  along  the  axial 
direction.

The present work includes the special case 
when  the  height  of  the  channel  is  constant. 
Hence, previous findings are reviewed.

3.1. Kinetic description

At the kinetic  level,  the flow is  presented in 
terms of the velocity  distribution function of 
the  molecules  f ( v,x',y',z' ) ,  where  v denotes 
the  molecular  velocity.  The  distribution 
function obeys a particular kinetic equation. In 
the  present  work,  the  BGK  equation  is 
considered,  which  provides  physically 
accurate results for isothermal flows.

Dimensionless  coordinates  and  molecular 
velocity are introduced according to  x=x' / l ,
y=y' / l , z=z' /l and c=v /v0 .  The distribution 

function is linearized such that

f (c,x,y,z ) =f 0 ( c,z ) [1+h (c,x,y ) ] , (4)

where h (c,x,y ) is the perturbation function and

f 0 (c,z )=n ( z ) π−3/2 v0
−3 exp (−c2 ) (5)

is the equilibrium distribution function.
The  perturbation  function  obeys  the 

linearized BGK equation

c x
∂ h
∂ x

+c y
∂h
∂ y

=−δh+δ 2cz uz -X p cz , (6)

where

uz =π−3/ 2∫h c z e−c2

dc (7)

is the dimensionless velocity and 
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X p=
dn
dz

1
n

(8)

is the local density gradient, which drives the 
flow.

The kinetic  equation is considered on the 
cross section of the channel. In order to define 
the problem well, the boundary condition for 
the  incoming  velocity  directions  at  the 
perimeter of the cross section is to be defined. 
In  the  present  work,  the  diffuse  reflection 
boundary condition is applied. In this situation, 
the  outgoing  molecules  accommodate  at  the 
channel wall and are reflected to the gas phase 
in  a  diffuse  manner.  The  diffuse  boundary 
condition  for  the  perturbation  function  is 
written by

h (c i ,x p ,y p)=0, (9)

where  the  subscripts  i and  p refer  to  the 
incoming  velocity  directions  and  the 
perimeter, respectively.

After  solving  the  kinetic  problem,  the 
velocity profile is known on the cross section 
sheet. Since the problem is linear, the velocity 
profile can be obtained as a linear function of 
the local  dimensionless density gradient.  The 
dimensionless flow rate

G(δ, a)=−
2

AX p
∫uz dA (10)

has  a  cardinal  importance.  It  provides  twice 
the absolute value of the spatial average of the 
velocity on the cross section sheet for a unity 
driving term. It is emphasized that  G depends 
on  the  local  rarefaction  parameter  and  the 
aspect  ratio  of  the  channel  defined  by 
a=H /W if  H≤W and  a=W / H otherwise. 
The  dimensionless  flow  rate  is  used  to 
determine the flow rate for a global pressure 
driven flow.

3.2. Local flow problem

The  kinetic  equation  is  to  be  solved 
numerically.  For  this  reason,  it  is  worth 
simplifying the overall problem by introducing 
the new distribution function

Y (c x ,c y ,x,y )=π−1/2∫hc z e
−cz

2

dcz . (11)

In terms of this function, the kinetic equations 
reads such that

c x
∂Y
∂ x

+c y
∂Y
∂ y

=−δY+δuz−
X p

2
, (12)

where

uz =π−1∬he
−cx

2−c
y
2

dc x dc y . (13)

The  boundary  condition  for  the  new 
distribution function is written by

Y (c ix ,c iy ,x p ,y p )=0. (14)

As  it  was  mentioned  in  the  introduction, 
kinetic equations are typically solved by either 
deterministic  or  probabilistic  approaches.  In 
the present work, it is solved by the discrete 
velocity method.

In  the  standard  discrete  velocity  method, 
the spatial and velocity spaces are discretized. 
Here,  the  spatial  coordinates  are  discretized 
into  MxM nodes,  while  the velocity  space is 
represented  by  a  quadrature.  The  velocity 
magnitude  is  given  by  an  N-point  Gauss-
Legendre  quadrature  and  the  π /2  angle 
interval  is  divided into  K nodes.  The spatial 
derivatives  of  Eq.  (12)  are  approximated  by 
finite-differences,  while  the  integral  in  Eq. 
(13)  is  calculated  by  the  quadrature.  The 
kinetic  equation  is  solved  iteratively.  By 
assuming an initial state for the velocity field, 
Eq. (12) is solved for the distribution function. 
Then, the velocity is calculated from Eq. (13) 
and inserted back to the kinetic equation. The 
overall procedure is repeated until a converged 
result is not reached.

The above mentioned standard iteration is 
slow near the hydrodynamic limit. In order to 
reduce the required number of iterations,  the 
accelerated  discrete  velocity  method  can  be 
used  [9,6].  This  method has  been  developed 
for  both  single  gases  and  gaseous  mixtures. 
Additional  moment  equations  are  derived on 
the  basis  of  the  kinetic  equation.  These 
additional  equations  are  solved  parallel  with 
the original kinetic one in a coupled iteration. 
Such an approach significantly accelerates the 
solution near the hydrodynamic limit.  Hence, 
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by using the accelerated method, results for the 
local  flow  problem  can  be  obtained  in  a 
convenient  manner  in  the  whole  range  of 
gaseous rarefaction.

In the present work, the following moment 
equation derived from Eq. (12) is used

Δuz=−2∂x
2 M x

−2∂ y
2 M y−4∂x ∂ y M xy -δX p ,

(15)

where

M a=π−1∬Y (ca
2−

1
2 )e

−cx
2−c

y
2

dc x dc y , (16)

M xy =π−1∬Y c x c y e
−cx

2−c
y
2

dcx dc y
(17)

with a= [ x,y ] .
In the accelerated iteration, after Eq. (12) is 

solved  in  an  iteration  stage,  the  higher 
moments  are  calculated,  and  the  velocity  is 
deduced  by  solving  the  moment  equation. 
Then,  this  velocity  is  inserted  into  Eq.  (12), 
and  the  overall  iteration  is  repeated  until  a 
desirable  convergence  is  not  reached.  The 
moment  equation  is  solved  by  the  finite 
difference method on the same grid as used for 
the  kinetic  equation.  The  velocity  at  the 
boundaries is not accelerated, but used as the 
boundary condition for the moment equation.

In  the  discrete  velocity  solution,  the 
following  parameters  have  been  applied: 
M=[151, 301] for δ≤10 and otherwise, N=16 
and K=[100,300] for δ≤2  and otherwise. The 
dimensionless  flow  rate  is  calculated  with 
numerical  accuracy  better  than  0.05%  for  a 
wide  range  of  the  rarefaction  and  numerous 
values  of  the  aspect  ratio.  In  the  ranges  of 
δ<2 and 2≤δ≤230 , the non-accelerated and 
accelerated  methods  have  been  used.  For 
δ>230  the slip  flow formula in  Ref.  [4] is 
used to deduce G.

3.3. Global behavior

The  overall  pressure  driven  flow  in  the 
channel can be determined by the conservation 
of mass. The mass flow rate can be written by

Ṁ=−G ( δ,a)
HWl
v0

dP
dz'

. (18)

This differential equation is equipped with the 
boundary conditions for P and solved to obtain 
the  pressure  distribution  and  the  mass  flow 
rate. It is noted that in Eq. (18), G, H and l are 
local  quantities  to  be  known at  every  points 
along the axis of the channel. G is determined 
on  the  basis  of  the  precomputed  database 
mentioned in the previous section.

The solution of Eq. (18) is carried out by 
discretizing  the  spatial  coordinate 
z'i=(i−1 ) Δz',  where  1≤i≤I and 
Δz'=L / (I −1 ) . The equation  is  solved by the 

following two step scheme

P' i =Pi−1−
Ṁ v0 Δz'

2G (δi−1 ,a'i ) H' i Wl' i

, (19)

Pi =Pi−1−
Ṁ v0 Δz'

G (δ' i ,a' i ) H' i Wl' i

, (20)

where  the  subscripts  i and  i-1  denote  the 
quantities  at  z'i ,z' i−1 ,  respectively,  and  the 
superscript ' stands for the intermediate value 
at (z' i +z'i+1) /2 . The mass flow rate is chosen 

in such a way that after the integration of Eqs. 
(19)-(20),  the  boundary  conditions  are 
fulfilled.  In  the  actual  calculation,  the  value 
I=10000 has been applied.

4. Results

Pressure driven flow is calculated through 
a  specific  tapered  channel  with  a  linearly 
varying height. The small height is denoted by 
HS, the large height is HL=100HS and the width 
is  W=500HS. If the large height is at the inlet, 
the flow direction is referred as nozle, and it is 
diffusor in the opposite situation. The length of 
the  channel  does  not  play  role  in  the 
calculation. The dimensionless mass flow rate 
is defined by

J=
v0 L

PB
N ( Π N+1 ) H SWH L

Ṁ (21)
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Table 1: Dimensionless flow rates versus outlet rarefaction parameter (left) or pressure ratio (right).

Table 2: Flow rates versus aspect ratio.

where  ΠN =PA
N
/ PB

N is  the  pressure  ratio;  in 

addition,  PA
N ,PB

N are  the  inlet  and  outlet 
pressures for the nozle case. The left  side of 
Table  1  (first  six  columns)  presents  the 
dimensionless  flow  rates  for  both  nozle  (N) 
and  diffusor  (D)  directions  at  Π=8  versus 
outlet rarefaction parameter of the nozle case 
δB

N .  The diffusor case is simulated with the 
same inlet and outlet pressures as used for the 
nozle  direction.  However,  the  results  are 
classified  by  the  outlet  nozle  rarefaction 
parameter. The average Knudsen number  Knm 

is  also  shown in the  table.  A wide range of 
rarefaction is covered. It can be seen that both 
nozle  and  diffusor  dimensionless  flow  rates 
exhibit  the Knudsen minimum. An important 
finding is that the flow rate for the nozle case 
is always larger than the corresponding value 
for  the  diffusor  direction.  The  diodicity 
defined  by  D=J N

/J D is  shown  in  the  sixth 
column  of  the  table.  The  diodicity  has  a 
maximum  in  the  transition  region  around, 

while it tends to zero in the hydrodynamic and 
free molecular limits. The right side of Table 1 
(last six columns) shows the flow rates at this 
outlet rarefaction versus the pressure ratio. As 
it  can  be  seen both  flow rates  and diodicity 
increase with increasing pressure ratio. Table 2 
shows  the  flow  rates  and  the  diodicity  for 
δB

N
=0 . 4 and  Π=8 versus the ratio  HL/HS. It 

is clearly seen that the diodicity is increasing 
with increasing  HL/HS. Hence, the diodicity is 
larger for channels which are more tapered. 

Figure 1 shows the axial distribution of the 
pressure and the rarefaction parameter for both 
directions  at  δB

N
=0 . 4 and  various  values  of 

the pressure ratio.  P0 is the outlet pressure 
for the nozle case. The pressure monotonically 
decreases  along  the  axis  in  both  cases. 
However, it  exhibits  a sharp change near the 
outlet and the inlet for the nozle and diffusor 
directions,  respectively.  The  reason  of  this 
behavior  is  the  monotonically  varying  cross 
section. The pressure profile is sharp near the 
small  height.  The  rarefaction  parameter 
behaves differently in the two directions. For 
the nozle and diffusor cases, it decreases and 
increases  along the  axis,  respectively.  In  the 
diffusor direction, the increasing cross section 
along  the  axis  overcomes  the  effect  of  the 
decreasing pressure, resulting into the unusual 
increasing  rarefaction  parameter.  Such 
behavior  is  not  observed  for  a  channel  with 
uniform cross section.

- 6 -

D Π D
1.00E-2 4.44E+1 1.612 5.98E+0 1.550 1.040 2 1.11 0.569 5.65E-1 0.539 1.057

2.00E-2 2.22E+1 1.484 2.99E+0 1.390 1.067 3 1.11 0.892 3.80E-1 0.816 1.092

4.00E-2 1.11E+1 1.398 1.50E+0 1.270 1.100 4 1.11 1.115 2.88E-1 0.997 1.118

7.00E-2 6.34E+0 1.369 8.55E-1 1.220 1.123 5 1.11 1.288 2.33E-1 1.133 1.137

1.00E-1 4.44E+0 1.374 5.98E-1 1.205 1.140 6 1.11 1.432 1.96E-1 1.245 1.150

2.00E-1 2.22E+0 1.454 2.99E-1 1.250 1.162 7 1.11 1.558 1.69E-1 1.341 1.162
4.00E-1 1.11E+0 1.672 1.50E-1 1.430 1.169 8 1.11 1.672 1.50E-1 1.430 1.169

7.00E-1 6.34E-1 2.017 8.55E-2 1.744 1.156 9 1.11 1.776 1.34E-1 1.511 1.175

1.00E+0 4.44E-1 2.363 5.98E-2 2.071 1.141 10 1.11 1.874 1.22E-1 1.589 1.180

2.00E+0 2.22E-1 3.517 2.99E-2 3.196 1.100 11 1.11 1.968 1.12E-1 1.664 1.182

4.00E+0 1.11E-1 5.818 1.50E-2 5.483 1.061 12 1.11 2.057 1.03E-1 1.737 1.184

7.00E+0 6.34E-2 9.271 8.55E-3 8.931 1.038 13 1.11 2.143 9.63E-2 1.809 1.185
1.00E+1 4.44E-2 12.727 5.98E-3 12.384 1.028 14 1.11 2.227 9.02E-2 1.880 1.185

δ
B
N Kn

m
N

JN Kn
m

D
JD Kn

m
N

JN Kn
m

D
JD

D

2 2.663E-2 2.543E-2 1.047
4 5.739E-2 5.233E-2 1.097
8 1.223E-1 1.078E-1 1.135

16 2.556E-1 2.211E-1 1.156
32 5.246E-1 4.502E-1 1.165

H
L
/H

S JN JD
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Figure 1: Axial distribution of pressure (left) and rarefaction parameters (right) for  δB

N
=0 . 4 . Squares,  

circles and triangles stand for pressure ratio [2, 7, 12], while empty and filled symbols represent results for  
the nozle (N) and diffusor (D) directions, respectively.

Figure 2: Axial distribution of pressure (left) and rarefaction parameter (right) for δ B
N
=0 .4 and Π=8 .  

and different values of HL/HS. Squares, circles and triangles stand for HL/HS=[2, 8, 16], while empty and  
filled symbols represent results for the nozle (N) and diffusor (D) directions, respectively.

Finally, Figure 2 shows the distribution of 
the pressure and the rarefaction parameter as a 
function  of  the  aspect  ratio  HL/HS for 
δB

N
=0 .4 and  Π=8 . The  deviation  of  these 

profiles  from the  typical  curves  for  uniform 
channels is more stronger if the aspect ratio is 
larger, i.e. the channel is more tapered.

5. Conclusions

In  this  paper,  the  kinetic  calculation  of 
isothermal pressure driven single gas flows in 
long tapered rectangular channels is presented 
and the corresponding results are shown. The 
solution  of  the  problem  is  divided  into  two 
stages. First the local flow problem is defined 
on  the  kinetic  level.  The  linearized  BGK 

kinetic equation is used to model the flow and 
solved  by  standard  and  accelerated  discrete 
velocity methods in a wide range of gaseous 
rarefaction  and  at  numerous  values  of  the 
aspect ratio of the cross section. The calculated 
dimensionless  flow  rates  form  a  database. 
Secondly,  the  mass  flow  rate  and  the 
distribution of the pressure and the rarefaction 
parameter are determined on the basis of the 
conservation of mass. Results in terms of the 
flow  rate  are  delivered  for  a  test  tapered 
channel  in  the  whole  range  of  gaseous 
rarefaction. It is shown that at the same inlet 
and outlet pressures, the flow rate is larger in 
the  nozle  than  diffusor  direction.  This 
diodicity  effect  has  a  maximum  in  the 
transition  region.  Results  for  the  axial 
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distribution of the pressure and the rarefaction 
parameter  are  also  shown.  The  profiles  are 
quite different to those for uniform capillaries. 
In  the  present  case,  the  pressure  exhibits  a 
sharp change near the small cross section, and 
the rarefaction parameter for the diffusor case 
increases along the axis of the channel even if 
the pressure is decreasing. The diodicity effect 
can be useful in constructing  micropumps. It 
is  shown  that  maximal  diodicity  can  be 
reached  in  the  transition  region.  Hence,  the 

corresponding devices  should  operate  in  this 
rarefaction range.
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