16 research outputs found

    Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems

    Full text link
    Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system

    Towards the development of safe, collaborative robotic freehand ultrasound

    Get PDF
    The use of robotics in medicine is of growing importance for modern health services, as robotic systems have the capacity to improve upon human tasks, thereby enhancing the treatment ability of a healthcare provider. In the medical sector, ultrasound imaging is an inexpensive approach without the high radiation emissions often associated with other modalities, especially when compared to MRI and CT imaging respectively. Over the past two decades, considerable effort has been invested into freehand ultrasound robotics research and development. However, this research has focused on the feasibility of the application, not the robotic fundamentals, such as motion control, calibration, and contextual awareness. Instead, much of the work is concentrated on custom designed robots, ultrasound image generation and visual servoing, or teleoperation. Research based on these topics often suffer from important limitations that impede their use in an adaptable, scalable, and real-world manner. Particularly, while custom robots may be designed for a specific application, commercial collaborative robots are a more robust and economical solution. Otherwise, various robotic ultrasound studies have shown the feasibility of using basic force control, but rarely explore controller tuning in the context of patient safety and deformable skin in an unstructured environment. Moreover, many studies evaluate novel visual servoing approaches, but do not consider the practicality of relying on external measurement devices for motion control. These studies neglect the importance of robot accuracy and calibration, which allow a system to safely navigate its environment while reducing the imaging errors associated with positioning. Hence, while the feasibility of robotic ultrasound has been the focal point in previous studies, there is a lack of attention to what occurs between system design and image output. This thesis addresses limitations of the current literature through three distinct contributions. Given the force-controlled nature of an ultrasound robot, the first contribution presents a closed-loop calibration approach using impedance control and low-cost equipment. Accuracy is a fundamental requirement for high-quality ultrasound image generation and targeting. This is especially true when following a specified path along a patient or synthesizing 2D slices into a 3D ultrasound image. However, even though most industrial robots are inherently precise, they are not necessarily accurate. While robot calibration itself has been extensively studied, many of the approaches rely on expensive and highly delicate equipment. Experimental testing showed that this method is comparable in quality to traditional calibration using a laser tracker. As demonstrated through an experimental study and validated with a laser tracker, the absolute accuracy of a collaborative robot was improved to a maximum error of 0.990mm, representing a 58.4% improvement when compared to the nominal model. The second contribution explores collisions and contact events, as they are a natural by-product of applications involving physical human-robot interaction (pHRI) in unstructured environments. Robot-assisted medical ultrasound is an example of a task where simply stopping the robot upon contact detection may not be an appropriate reaction strategy. Thus, the robot should have an awareness of body contact location to properly plan force-controlled trajectories along the human body using the imaging probe. This is especially true for remote ultrasound systems where safety and manipulability are important elements to consider when operating a remote medical system through a communication network. A framework is proposed for robot contact classification using the built-in sensor data of a collaborative robot. Unlike previous studies, this classification does not discern between intended vs. unintended contact scenarios, but rather classifies what was involved in the contact event. The classifier can discern different ISO/TS 15066:2016 specific body areas along a human-model leg with 89.37% accuracy. Altogether, this contact distinction framework allows for more complex reaction strategies and tailored robot behaviour during pHRI. Lastly, given that the success of an ultrasound task depends on the capability of the robot system to handle pHRI, pure motion control is insufficient. Force control techniques are necessary to achieve effective and adaptable behaviour of a robotic system in the unstructured ultrasound environment while also ensuring safe pHRI. While force control does not require explicit knowledge of the environment, to achieve an acceptable dynamic behaviour, the control parameters must be tuned. The third contribution proposes a simple and effective online tuning framework for force-based robotic freehand ultrasound motion control. Within the context of medical ultrasound, different human body locations have a different stiffness and will require unique tunings. Through real-world experiments with a collaborative robot, the framework tuned motion control for optimal and safe trajectories along a human leg phantom. The optimization process was able to successfully reduce the mean absolute error (MAE) of the motion contact force to 0.537N through the evolution of eight motion control parameters. Furthermore, contextual awareness through motion classification can offer a framework for pHRI optimization and safety through predictive motion behaviour with a future goal of autonomous pHRI. As such, a classification pipeline, trained using the tuning process motion data, was able to reliably classify the future force tracking quality of a motion session with an accuracy of 91.82 %

    Digital Transformation in Norwegian Enterprises

    Get PDF
    This open access book presents a number of case studies on digital transformation in Norway, one of the fore-runners in the digital progress index established by the European Commission in 2020. They explore the process of adoption, diffusion and value generation from digital technologies, and how the use of different digital solutions has enabled Norwegian enterprises to digitally transform their operations and business models. The book starts with an introductory chapter summarizing a vast body of literature in order to synthesize what is already known about digital transformation before exploring the Norwegian context in more detail. Then a series of case studies from the private and public sector in Norway is presented. They document a process perspective which describes the sequence of events during and after adoption of digital solutions, as well as the types of business value that were realized. Through these single studies, the process of digital transformation is illustrated, a number of key findings highlighted, and eventually theoretical and practical recommendations based on these cases emphasized. The book closes with a brief overview of some emerging technologies, and comments on how they are likely to change different sectors. Digital transformation has been one of the priority areas for the Norwegian government over the past years and puts Norwegian enterprises upfront in adopting novel technologies and utilizing them for achieving organizational goals. This experience accumulated over the years makes the Norwegian context a particularly interesting one in understanding how private and public organizations make use of new digital solutions, what lessons can be learnt during the process, and what are some of the key success and failure factors. This way the book is written for practitioners who are currently involved in digital transformation projects in their organizations, researchers of information systems and management, as well as master students in degrees of informatics and technology management

    Bridge Structrural Health Monitoring Using a Cyber-Physical System Framework

    Full text link
    Highway bridges are critical infrastructure elements supporting commercial and personal traffic. However, bridge deterioration coupled with insufficient funding for bridge maintenance remain a chronic problem faced by the United States. With the emergence of wireless sensor networks (WSN), structural health monitoring (SHM) has gained increasing attention over the last decade as a viable means of assessing bridge structural conditions. While intensive research has been conducted on bridge SHM, few studies have clearly demonstrated the value of SHM to bridge owners, especially using real-world implementation in operational bridges. This thesis first aims to enhance existing bridge SHM implementations by developing a cyber-physical system (CPS) framework that integrates multiple SHM systems with traffic cameras and weigh-in-motion (WIM) stations located along the same corridor. To demonstrate the efficacy of the proposed CPS, a 20-mile segment of the northbound I-275 highway in Michigan is instrumented with four traffic cameras, two bridge SHM systems and a WIM station. Real-time truck detection algorithms are deployed to intelligently trigger the SHM systems for data collection during large truck events. Such a triggering approach can improve data acquisition efficiency by up to 70% (as compared to schedule-based data collection). Leveraging computer vision-based truck re-identification techniques applied to videos from the traffic cameras along the corridor, a two-stage pipeline is proposed to fuse bridge input data (i.e. truck loads as measured by the WIM station) and output data (i.e. bridge responses to a given truck load). From August 2017 to April 2019, over 20,000 truck events have been captured by the CPS. To the author’s best knowledge, the CPS implementation is the first of its kind in the nation and offers large volume of heterogeneous input-output data thereby opening new opportunities for novel data-driven bridge condition assessment methods. Built upon the developed CPS framework, the second half of the thesis focuses on use of the data in real-world bridge asset management applications. Long-term bridge strain response data is used to investigate and model composite action behavior exhibited in slab-on-girder highway bridges. Partial composite action is observed and quantified over negative bending regions of the bridge through the monitoring of slip strain at the girder-deck interface. It is revealed that undesired composite action over negative bending regions might be a cause of deck deterioration. The analysis performed on modeling composite action is a first in studying composite behavior in operational bridges with in-situ SHM measurements. Second, a data-driven analytical method is proposed to derive site-specific parameters such as dynamic load allowance and unit influence lines for bridge load rating using the input-output data. The resulting rating factors more rationally account for the bridge's systematic behavior leading to more accurate rating of a bridge's load-carrying capacity. Third, the proposed CPS framework is shown capable of measuring highway traffic loads. The paired WIM and bridge response data is used for training a learning-based bridge WIM system where truck weight characteristics such as axle weights are derived directly using corresponding bridge response measurements. Such an approach is successfully utilized to extend the functionality of an existing bridge SHM system for truck weighing purposes achieving precision requirements of a Type-II WIM station (e.g. vehicle gross weight error of less than 15%).PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163210/1/rayhou_1.pd

    Designing Data Spaces

    Get PDF
    This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    An Investigation on Benefit-Cost Analysis of Greenhouse Structures in Antalya

    Get PDF
    Significant population increase across the world, loss of cultivable land and increasing demand for food put pressure on agriculture. To meet the demand, greenhouses are built, which are, light structures with transparent cladding material in order to provide controlled microclimatic environment proper for plant production. Conceptually, greenhouses are similar with manufacturing buildings where a controlled environment for manufacturing and production have been provided and proper spaces for standardized production processes have been enabled. Parallel with the trends in the world, particularly in southern regions, greenhouse structures have been increasingly constructed and operated in Turkey. A significant number of greenhouses are located at Antalya. The satellite images demonstrated that for over last three decades, there has been a continuous invasion of greenhouses on all cultivable land. There are various researches and attempts for the improvement of greenhouse design and for increasing food production by decreasing required energy consumption. However, the majority of greenhouses in Turkey are very rudimentary structures where capital required for investment is low, but maintenance requirements are high when compared with new generation greenhouse structures. In this research paper, life-long capital requirements for construction and operation of greenhouse buildings in Antalya has been investigated by using benefit-cost analysis study
    corecore