34,562 research outputs found

    Phase Diagram of Traffic States in the Presence of Inhomogeneities

    Full text link
    We present a phase diagram of the different kinds of congested traffic that are triggered by disturbances when passing ramps or other spatial inhomogeneities of a freeway. The simulation results obtained by the nonlocal, gas-kinetic-based traffic model are in good agreement with empirical findigs. They allow to understand the observed trasitions between free and various kinds of congested traffic, among them localized clusters, stop-and-go waves, and different types of ``synchronized'' traffic. The proposed conditions for the existence of these states suggest that the phase diagram is universal for a class of different microscopic and macroscopic traffic models.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.theo2.physik.uni-stuttgart.de/treiber.htm

    Noise emission corrections at intersections based on microscopic traffic simulation

    Get PDF
    One of the goals of the European IMAGINE project, is to formulate strategies to improve traffic modelling for application in noise mapping. It is well known that the specific deceleration and acceleration dynamics of traffic at junctions can influence local noise emission. However, macroscopic traffic models do not always model intersections, and if they do, only the influence of intersections on travel time is incorporated. In these cases, it would be useful to know what increase or decrease in noise production can be expected at or near intersections. A correction factor for road crossings has been suggested in several national noise emission standards. The question is open whether such a correction factor should be included in future harmonized methods. In this paper, a case study is presented, consisting of a large set of microscopic traffic simulations and associated noise emission calculations, which provides some insight into the specific dynamics of the noise emission near different types of intersections. A spatial approach is used, in which inbound and outbound lanes are divided into deceleration, queuing and acceleration zones. Results from regression analysis on the numerical simulations indicate that meaningful relations between noise corrections and traffic flow parameters such as traffic intensity and composition can be deduced

    Modelling and Control of Freeway Traffic

    Get PDF
    This paper presents the most recent developments of the Simulator of Intelligent Transportation Systems (SITS). The SITS is based on a microscopic simulation approach to reproduce real traffic conditions in an urban or non-urban network. In order to analyse the quality of the microscopic traffic simulator SITS a benchmark test was performed. A dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform, is then addressed. The paper presents also a new traffic control concept applied to a freeway traffic system

    Computation Speed of the F.A.S.T. Model

    Full text link
    The F.A.S.T. model for microscopic simulation of pedestrians was formulated with the idea of parallelizability and small computation times in general in mind, but so far it was never demonstrated, if it can in fact be implemented efficiently for execution on a multi-core or multi-CPU system. In this contribution results are given on computation times for the F.A.S.T. model on an eight-core PC.Comment: Accepted as contribution to "Traffic and Granular Flow 2009" proceedings. This is a slightly extended versio

    Simulation Framework for Cooperative Adaptive Cruise Control with Empirical DSRC Module

    Full text link
    Wireless communication plays a vital role in the promising performance of connected and automated vehicle (CAV) technology. This paper proposes a Vissim-based microscopic traffic simulation framework with an analytical dedicated short-range communication (DSRC) module for packet reception. Being derived from ns-2, a packet-level network simulator, the DSRC probability module takes into account the imperfect wireless communication that occurs in real-world deployment. Four managed lane deployment strategies are evaluated using the proposed framework. While the average packet reception rate is above 93\% among all tested scenarios, the results reveal that the reliability of the vehicle-to-vehicle (V2V) communication can be influenced by the deployment strategies. Additionally, the proposed framework exhibits desirable scalability for traffic simulation and it is able to evaluate transportation-network-level deployment strategies in the near future for CAV technologies.Comment: 6 pages, 6 figure, 44th Annual Conference of the IEEE Industrial Electronics Societ
    corecore