3,091 research outputs found

    New high fill-factor triangular micro-lens array fabrication method using UV proximity printing

    Get PDF
    A simple and effective method to fabricate a high fill-factor triangular microlens array using the proximity printing in lithography process is reported. The technology utilizes the UV proximity printing by controlling a printing gap between the mask and substrate. The designed approximate triangle microlens array pattern can be fabricated the high fill-factor triangular microlens array in photoresist. It is due to the UV light diffraction to deflect away from the aperture edges and produce a certain exposure in photoresist material outside the aperture edges. This method can precisely control the geometric profile of high fill factor triangular microlens array. The experimental results showed that the triangular micro-lens array in photoresist could be formed automatically when the printing gap ranged from 240 micrometers to 840 micrometers. The gapless triangular microlens array will be used to increases of luminance for backlight module of liquid crystal displays.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Long working range light field microscope with fast scanning multifocal liquid crystal microlens array

    Get PDF
    The light field microscope has the potential of recording the 3D information of biological specimens in real time with a conventional light source. To further extend the depth of field to broaden its applications, in this paper, we proposed a multifocal high-resistance liquid crystal microlens array instead of the fixed microlens array. The developed multifocal liquid crystal microlens array can provide high quality point spread function in multiple focal lengths. By adjusting the focal length of the liquid crystal microlens array sequentially, the total working range of the light field microscope can be much extended. Furthermore, in our proposed system, the intermediate image was placed in the virtual image space of the microlens array, where the condition of the lenslets numerical aperture was considerably smaller. Consequently, a thin-cell-gap liquid crystal microlens array with fast response time can be implemented for time-multiplexed scanning

    Strain responsive concave and convex microlens arrays

    Get PDF
    We report the fabrication of single-component, strain responsive microlens arrays with real-time tunability. The concave lens array is fabricated by patterning hard oxide layer on a bidirectionally prestretched soft elastomer, polydimethylsiloxane PDMS followed by confined buckling upon release of the prestrain. The convex microlens array is replica molded from the concave lenses in PDMS. Due to difference in lens formation mechanisms, the two types of lenses show different tunable range of focal length in response to the applied strain: large focal length change is observed from the concave microlens array, whereas that from the convex microlens array is much smaller

    Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    Get PDF
    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array

    Single shot three-dimensional imaging of dilute atomic clouds

    Get PDF
    Light field microscopy methods together with three dimensional (3D) deconvolution can be used to obtain single shot 3D images of atomic clouds. We demonstrate the method using a test setup which extracts three dimensional images from a fluorescent 87^{87}Rb atomic vapor.Comment: 10 pages, 5 figure

    Microlens Array Grid Estimation, Light Field Decoding, and Calibration

    Get PDF
    We quantitatively investigate multiple algorithms for microlens array grid estimation for microlens array-based light field cameras. Explicitly taking into account natural and mechanical vignetting effects, we propose a new method for microlens array grid estimation that outperforms the ones previously discussed in the literature. To quantify the performance of the algorithms, we propose an evaluation pipeline utilizing application-specific raytraced white images with known microlens positions. Using a large dataset of synthesized white images, we thoroughly compare the performance of the different estimation algorithms. As an example, we apply our results to the decoding and calibration of light fields taken with a Lytro Illum camera. We observe that decoding as well as calibration benefit from a more accurate, vignetting-aware grid estimation, especially in peripheral subapertures of the light field

    A compact, multi-pixel parametric light source

    Full text link
    The features of a compact, single pass, multi-pixel optical parametric generator are discussed. Several hundreds of independent high spatial-quality tunable ultrashort pulses were produced by pumping a bulk lithium triborate crystal with an array of tightly focussed intense beams. The array of beams was produced by shining a microlenses array with a large pump beam. Overall conversion efficiency to signal and idler up to 30% of the pump beam has been reported. Shot-to-shot energy fluctuation down to 3% was achieved for the generated radiation.Comment: 11 pages, 6 figures, submitted to "Optics Communications

    Pre-processing of integral images for 3-D displays

    Get PDF
    This paper seeks to explore a method to accurately correct geometric distortions caused during the capture of three dimensional (3-D) integral images. Such distortions are rotational and scaling errors which, if not corrected, will cause banding and moire effects on the replayed image. The method for calculating the angle of deviation in the 3-D Integral Images is based on Hough Transform. It allows detection of the angle necessary for correction of the rotational error. Experiments have been conducted on a number of 3-D integral image samples and it has been found that the proposed method produces results with accuracy of 0.05 deg
    corecore