6,702 research outputs found

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    A micromanipulation cell including a microtools changer.

    No full text
    International audienceThis paper describes the structure of a flexible micromanipulation cell designed to perform precise pick and place operations of objects with typical sizes from 20 to 500 ¹m. This cell is composed of three linear stages (X-Y-Z), a four degrees of freedom microgripper and a microtools changer

    Design, fabrication and characterization of a flexible system based on thermal glue for in AIR and in SEM microassembly.

    No full text
    International audienceThis paper presents the design, fabrication and characterization of a device able to exchange the tip part (so-called the tools) of a two fingered microgripper. The principle of this tool changer is based on the use of a thermal glue whose state (liquid or solid) is changed by heating or cooling. Several kinds of pairs of tools have been designed. The suitable pair of tools can be chosen according to the size, shape and material of the object to manipulate. The tool changer enables one to perform a sequence of elementary micromanipulation tasks (i.e. an assembly sequence) by using only one gripper mounted on only one manipulator. The tool changer has been automated and successfully tested in air and in the vacuum chamber of a Scanning Electron Microscope (SEM). It brings flexibility to the micromanipulation cell and contributes to reduce the costs, the used space and experimentations time for micromanipulations in the SEM. The assembly of a ball bearing (the balls are 200 ¹m in diameter) has been successfully tested using the microgripper equipped with the tool changer in a SEM. This tool changer has been designed for a microgripper but can be easily adapted to lots of other kinds of systems

    Micromanipulation and Micro-Assembly Systems.

    No full text
    International audienceThe needs to manipulate micrometer sized objects keeps growing and concerns numerous and various fields like microsystems (MEMS1 and MOEMS2), micromechanics, optics, biology or pharmacy. The specificities of size, material, geometry and consistency of manipulated micro-objects, their surrounding, the kind of task to perform and the free size are all the more specific parameters that strongly influence the design and working of micromanipulation and micro-assembly systems. These systems are widely developing because they correspond both to industrial needs and really challenging scientific problematics. For these reasons, the present paper aimed at dealing with a review that mainly focuses on systems recently developed to assemble small series of microcomponents. The paper especially points out different solutions of carriers structures, gripping principles, sensors, other peri-microrobotic systems and control systems presenting the main solution and justifying their use and interest

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly

    No full text
    International audienceThis paper presents a review of the major haptic feedback teleoperation systems for micromanipulation. During the last decade, the handling of micrometer-sized objects has become a critical issue. Fields of application from material science to electronics demonstrate an urgent need for intuitive and flexible manipulation systems able to deal with small-scale industrial projects and assembly tasks. Two main approaches have been considered: fully automated tasks and manual operation. The first one require fully pre determined tasks, while the later necessitates highly trained operators. To overcome these issues the use of haptic feedback teleoperation where the user manipulates the tool through a joystick whilst feeling a force feedback, appears to be a promising solution as it allows high intuitiveness and flexibility. Major advances have been achieved during this last decade, starting with systems that enable the operator to feel the substrate topology, to the current state-of-the-art where 3D haptic feedback is provided to aid manipulation tasks. This paper details the major achievements and the solutions that have been developed to propose 3D haptic feedback for tools that often lack 3D force measurements. The use of virtual reality to enhance the immersion is also addressed. The strategies developed provide haptic feedback teleoperation systems with a high degree of assistance and for a wide range of micromanipulation tools. Based on this expertise on haptic for micromanipulation and virtual reality assistance it is now possible to propose microassembly systems for objects as small as 1 to 10 micrometers. This is a mature field and will benefit small-scale industrial projects where precision and flexibility in microassembly are required

    A Suite of Robust Controllers for the Manipulation of Microscale Objects

    Get PDF
    A suite of novel robust controllers is introduced for the pickup operation of microscale objects in a microelectromechanical system (MEMS). In MEMS, adhesive, surface tension, friction, and van der Waals forces are dominant. Moreover, these forces are typically unknown. The proposed robust controller overcomes the unknown contact dynamics and ensures its performance in the presence of actuator constraints by assuming that the upper bounds on these forces are known. On the other hand, for the robust adaptive critic-based neural network (NN) controller, the unknown dynamic forces are estimated online. It consists of an action NN for compensating the unknown system dynamics and a critic NN for approximating a certain strategic utility function and tuning the action NN weights. by using the Lyapunov approach, the uniform ultimate boundedness of the closed-loop manipulation error is shown for all the controllers for the pickup task. To imitate a practical system, a few system states are considered to be unavailable due to the presence of measurement noise. An output feedback version of the adaptive NN controller is proposed by exploiting the separation principle through a high-gain observer design. The problem of measurement noise is also overcome by constructing a reference system. Simulation results are presented and compared to substantiate the theoretical conclusions

    Development of novel micropneumatic grippers for biomanipulation

    Get PDF
    Microbjects with dimensions from 1 μm to 1 mm have been developed recently for different aspects and purposes. Consequently, the development of handling and manipulation tools to fulfil this need is urgently required. Micromanipulation techniques could be generally categorized according to their actuation method such as electrostatic, thermal, shape memory alloy, piezoelectric, magnetic, and fluidic actuation. Each of which has its advantage and disadvantage. The fluidic actuation has been overlooked in MEMS despite its satisfactory output in the micro-scale. This thesis presents different families of pneumatically driven, low cost, compatible with biological environment, scalable, and controllable microgrippers. The first family demonstrated a polymeric microgripper that was laser cut and actuated pneumatically. It was tested to manipulate microparticles down to 200 microns. To overcome the assembly challenges that arise in this family, the second family was proposed. The second family was a micro-cantilever based microgripper, where the device was assembled layer by layer to form a 3D structure. The microcantilevers were fabricated using photo-etching technique, and demonstrated the applicability to manipulate micro-particles down to 200 microns using automated pick-and-place procedure. In addition, this family was used as a tactile-detector as well. Due to the angular gripping scheme followed by the above mentioned families, gripping smaller objects becomes a challenging task. A third family following a parallel gripping scheme was proposed allowing the gripping of smaller objects to be visible. It comprises a compliant structure microgripper actuated pneumatically and fabricated using picosecond laser technology, and demonstrated the capability of gripping microobject as small as 100 μm microbeads. An FEA modelling was employed to validate the experimental and analytical results, and excellent matching was achieved
    corecore