2,288 research outputs found

    A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics

    Full text link
    Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the heterogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Additionally, the sub-continuum fluid-fluid and fluid-solid interactions in nano- to micro-scale shale pores, which are physically and chemically sophisticated, must be captured. To address those challenges, we present a GPU-accelerated package for simulation of flow in nano- to micro-pore networks with a many-body dissipative particle dynamics (mDPD) mesoscale model. Based on a fully distributed parallel paradigm, the code offloads all intensive workloads on GPUs. Other advancements, such as smart particle packing and no-slip boundary condition in complex pore geometries, are also implemented for the construction and the simulation of the realistic shale pores from 3D nanometer-resolution stack images. Our code is validated for accuracy and compared against the CPU counterpart for speedup. In our benchmark tests, the code delivers nearly perfect strong scaling and weak scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak Ridge National Laboratory's (ORNL) Titan supercomputer. Moreover, a single-GPU benchmark on ORNL's SummitDev and IBM's AC922 suggests that the host-to-device NVLink can boost performance over PCIe by a remarkable 40\%. Lastly, we demonstrate, through a flow simulation in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the performance delivered by our package with four V100 GPUs on ORNL's Summit architecture. This simulation package enables quick-turnaround and high-throughput mesoscopic numerical simulations for investigating complex flow phenomena in nano- to micro-porous rocks with realistic pore geometries

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie

    Analysis and evaluation of MapReduce solutions on an HPC cluster

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computers & Electrical Engineering. The final authenticated version is available online at: https://doi.org/10.1016/j.compeleceng.2015.11.021[Abstract] The ever growing needs of Big Data applications are demanding challenging capabilities which cannot be handled easily by traditional systems, and thus more and more organizations are adopting High Performance Computing (HPC) to improve scalability and efficiency. Moreover, Big Data frameworks like Hadoop need to be adapted to leverage the available resources in HPC environments. This situation has caused the emergence of several HPC-oriented MapReduce frameworks, which benefit from different technologies traditionally oriented to supercomputing, such as high-performance interconnects or the message-passing interface. This work aims to establish a taxonomy of these frameworks together with a thorough evaluation, which has been carried out in terms of performance and energy efficiency metrics. Furthermore, the adaptability to emerging disks technologies, such as solid state drives, has been assessed. The results have shown that new frameworks like DataMPI can outperform Hadoop, although using IP over InfiniBand also provides significant benefits without code modifications.Ministerio de Economía y Competitividad; TIN2013-42148-

    Evaluation of the PlayStation 2 as a cluster computing node

    Get PDF
    Cluster computing is currently a popular, cost-effective solution to the increasing computational demands of many applications in scientific computing and image processing. A cluster computer is comprised of several networked computers known as nodes. Since the goal of cluster computing is to provide a cost-effective means to processing computationally demanding applications, nodes that can be obtained at a low price with minimal performance tradeoff are always attractive. Presently, the most common cluster computers are comprised of networks of workstations constructed from commodity components. Recent trends have shown that computers being developed and deployed for purposes other than traditional personal computers or workstations have presented new candidates for cluster computing nodes. The new computing node candidates being considered may provide a competitive and even less expensive alternative to the cluster computing nodes being used today. Machines such as video game consoles, whose prices are kept extremely low due to intense marketplace competition, are a prime example of such machines. The Sony PlayStation 2, in particular, provides the user with low-level hardware devices that are often found in more expensive machines. This work presents and evaluation of the PlayStation 2 video game console as a cluster computing node for scientific and image processing applications. From this evaluation, a determination is made as to whether the PlayStation 2 is a viable alternative to the cluster computing nodes being used today
    corecore