11,929 research outputs found

    Optimal minimum-cost quantum measurements for imperfect detection

    Get PDF
    Knowledge of optimal quantum measurements is important for a wide range of situations, including quantum communication and quantum metrology. Quantum measurements are usually optimised with an ideal experimental realisation in mind. Real devices and detectors are, however, imperfect. This has to be taken into account when optimising quantum measurements. In this paper, we derive the optimal minimum-cost and minimum-error measurements for a general model of imperfect detection.Comment: 5 page

    Quantum engineering of squeezed states for quantum communication and metrology

    Get PDF
    We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.Comment: 12 pages, 3 figure

    Quantum Computing, Metrology, and Imaging

    Full text link
    Information science is entering into a new era in which certain subtleties of quantum mechanics enables large enhancements in computational efficiency and communication security. Naturally, precise control of quantum systems required for the implementation of quantum information processing protocols implies potential breakthoughs in other sciences and technologies. We discuss recent developments in quantum control in optical systems and their applications in metrology and imaging.Comment: 11 pages, 6 figures; Proceedings of SPIE: Fluctuations and Noise in Photonics and Quantum Optics III (2005

    Reconfigurable controlled two-qubit operation on a quantum photonic chip

    Get PDF
    Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 \pm 0.02 average similarity between measured and ideal operations

    The Quantum Internet

    Get PDF
    Quantum networks offer a unifying set of opportunities and challenges across exciting intellectual and technical frontiers, including for quantum computation, communication, and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for the generation and characterization of quantum coherence and entanglement. Fundamental to this endeavor are quantum interconnects that convert quantum states from one physical system to those of another in a reversible fashion. Such quantum connectivity for networks can be achieved by optical interactions of single photons and atoms, thereby enabling entanglement distribution and quantum teleportation between nodes.Comment: 15 pages, 6 figures Higher resolution versions of the figures can be downloaded from the following link: http://www.its.caltech.edu/~hjkimble/QNet-figures-high-resolutio

    Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles

    Get PDF
    A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200
    corecore