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Optimal minimum-cost quantum measurements for imperfect detection

Erika Andersson
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Knowledge of optimal quantum measurements is important for a wide range of situations, including
quantum communication and quantum metrology. Quantum measurements are usually optimized with an ideal
experimental realization in mind. Real devices and detectors are, however, imperfect. This has to be taken
into account when optimizing quantum measurements. In this paper, we derive the optimal minimum-cost and
minimum-error measurements for a general model of imperfect detection.
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I. INTRODUCTION

Quantum measurements may be optimized with respect
to a range of criteria. For example, when distinguishing
between a set of quantum states ρj , occurring with prior
probabilities pj , we may want to minimize the average error
in the result or, somewhat more generally, the average cost
[1–3]. Other possibilities are to maximize the information
contained in the result or to ask that measurement results
should be unambiguous [2,4]. The optimal measurement is
often a generalized quantum measurement. These go beyond
standard projective quantum measurements and are referred to
as probability operator measures (POMs) or positive operator-
valued measures (POVMs) [1–3]. How to optimally perform a
quantum measurement is relevant for a wide range of applica-
tions, from quantum communication, including quantum key
distribution (QKD) [5], to parameter estimation and quantum
metrology, such as for optimal quantum estimation of the
Unruh-Hawking effect [6].

Derivations of optimal quantum measurement strategies
have, however, aimed at finding the optimal ideal quantum
measurement, that is, the best that can be done provided that an
actual experimental realization is ideal. An advantage is that
the theoretical derivation of the optimal ideal measurement
can be separated from working out how to do the experimental
realization. The same theoretically optimal measurement may
be realized in very different ways, depending on the character
of the quantum system to be measured. Generalized quantum
measurements have been realized on photon polarization (see,
e.g., [7–14]) and very recently on nitrogen-vacancy centers in
diamond [15]. They could also be realized on ions or atoms
with existing experimental tools [16–18].

Real experiments are of course not ideal. One might
ask whether imperfections in device components change the
strategy that we should aim to implement. This question has
largely been overlooked. It turns out that the measurement
we should aim to implement does indeed in general depend
on the particular properties of the experimental devices used.
An indication that this might be the case is given by the
fact that certain types of pre-amplification can reduce the
noise in photon-number and quadrature measurements [19]
and that the use of cloning can improve estimates of states and
observables for qubits when a two-outcome detector suffers
from isotropic noise [20]. This is not self-evident, since an
amplifier will add noise, which could degrade the performance
of a measurement. Also, for unambiguous comparison of

quantum states for detectors with less than unit efficiency,
it is sometimes advantageous to use an amplifier in front of
the detector [21]. In these works, however, specific types of
amplification and cloning are evaluated for usefulness, without
optimizing more generally over all possible premeasurement
transforms.

In this paper, we will derive the optimal minimum-cost
measurement for the case when the final detection process is
not perfect. It turns out that when distinguishing between two
quantum states the optimal measurement strategy we should
aim for remains the same as in the ideal case, although the cost
changes. For three or more states, the optimal measurement
strategy in general changes, and we give an example of this.
We finish with a discussion.

II. GENERALIZED QUANTUM MEASUREMENTS

Generalized quantum measurements (POMs) can be real-
ized in terms of a projective measurement in an extended
Hilbert space [1,3]. This is used in both existing and suggested
experimental realizations. The Hilbert space of the quantum
system ρS to be measured can either be extended through a
direct sum, e.g., by using extra atomic levels or adding more
optical paths, or through a tensor product by coupling ρS to an
auxiliary quantum system ρA. Broadly speaking, the number
of dimensions in the total extended Hilbert space corresponds
to the number of outcomes of the measurement. Less well
known is that by realizing the measurement sequentially it is
possible to limit the total number of dimensions needed at any
one time to d + 1, where d is the dimension of ρS [22]. We can
also realize the measurement by using at most 2d dimensions,
by coupling ρS to an auxiliary qubit, measuring the qubit, and
repeating [23]. This realization is the most efficient in the sense
that fewer operations are needed on average.

Any ideal experimental realization of a generalized quan-
tum measurement will thus employ a final projective mea-
surement in some basis on some quantum system. The final
projective measurement is preceded by a unitary transform in
the extended Hilbert space. For example, for a measurement
on an atom or ion, we may couple its levels to some additional
atomic levels, e.g., using laser pulses or passage through a
cavity [16,18], followed by a final measurement of which
energy level the atom or ion occupies. If making measurements
on a photon, the final measurement might be a detection of
which path the photon exits from and with which polarization,
in a suitable polarization basis [8–14]. This final measurement
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is preceded by an optical network which includes wave
plates and beam splitters, effecting a unitary transform in the
extended space.

Formally, any generalized measurement strategy is de-
scribed by a set of measurement operators �i , acting in the
space of ρS , the system to be measured. If the system is
prepared in a state ρj , then the probability to obtain outcome i

is given by p(i|j ) = Tr(�iρj ). The fact that
∑

i p(i|j ) = 1
for any ρj corresponds to the condition

∑
i �i = 1, and

the fact that probabilities for all outcomes are non-negative
corresponds to �i � 0 (and consequently �i have to be
Hermitian). Note that we may have more outcomes than we
have dimensions in the space of the system to be measured
and that �i need not be orthonormal. Each measurement
operator �i is obtained by taking the corresponding projective
measurement operators in the extended Hilbert space and
projecting them onto the subspace of ρS .

III. IMPERFECT DETECTION

Sources of error in the experimental realization can now be
divided into two categories, errors in the unitary transform
preceding the final measurement and errors in the final
projective measurement. In this paper, we will consider the
latter type of errors. Errors in the unitary transform are of
course also likely to occur in any realization, and this will
be the subject of future work. It is straightforward to see that
also imperfections in the preparation of the state of auxiliary
systems, if these are used in the realization of the measurement,
will effectively result in errors in the unitary transform
preceding the measurement. Suppose, for example, that we are
distinguishing between qubit states, which are superpositions
of |0〉S and |1〉S , and that the optimal measurement can be
effected by adding an extra basis state |2〉S and implementing
the unitary transform

U = |a〉SS〈0| + |b〉SS〈1| + |c〉SS〈2|,
where {|a〉S,|b〉S,|c〉S} is another orthonormal basis for the
space spanned by {|0〉S,|1〉S,|2〉S}, followed by a projective
measurement in the basis {|0〉S,|1〉S,|2〉S}. We can also imple-
ment the same measurement using an ancillary qubit instead
of an additional level, by substituting, for example, |0〉S →
|0〉S ⊗ |0〉A,|1〉S → |1〉S ⊗ |0〉A,|2〉S → |0〉S ⊗ |1〉A. The an-
cillary qubit should then be prepared in the state |0〉A prior to
the unitary transform analogous to U taking place. If it instead
is prepared in the state |1〉A, then translated back in terms
of an implementation using extra levels we are effectively
implementing the wrong unitary transform:

U ′ = |c〉SS〈0| + |3〉SS〈1| + |a〉SS〈2| + |b〉SS〈3|.
Here the state |3〉 is another basis state, corresponding to |1〉S ⊗
|1〉A (we can add a term |3〉SS〈3| to U above without affecting
the implementation of the measurement, since the state of the
system to be measured initially lies in the space spanned by
{|0〉,|1〉}). Similarly, it is easy to see that preparing the ancilla
in some other pure state, or in a mixed state, will also result in
an operation different from the one we intended to implement.

As stated above, we will in this work consider errors in the
final projective measurement. In particular, suppose that when
a perfect projective measurement would have given result j

then our measurement will instead give result i with probability
q(i|j ), where

∑
i q(i|j ) = 1; q(i|j ) are the elements of a

stochastic matrix. This is a generally applicable description
of errors in the final measurement. We may be able to vary
the unitary transform that precedes the final measurement, but
the final measurement and the q(i|j ) are often fixed by the
nature of the detection process, including the efficiency of
the detectors, and what basis states we must project on. (A
final measurement in a basis slightly different than intended,
for example, can also be viewed as an error in the transform
preceding the final measurement.) Any nonideal measurement
we are able to implement will then be described by mixed
measurement operators

�̃i =
∑

j

q(i|j )�j,
∑

i

q(i|j ) = 1, (1)

where �j are the measurement operators for an unconstrained
generalized measurement strategy.

For example, when trying to implement a photon-number
measurement, the measurement that we are actually able to
implement might be described by the measurement operators

�no click =
∞∑

n=0

q(0|n)|n〉〈n|,
(2)

�click =
∞∑

n=0

q(1|n)|n〉〈n|,

where |n〉 is a photon-number state. This measurement thus
has only two outcomes, and q(0|n) and q(1|n) are the
probabilities to obtain “no click” and a “click,” respectively,
when there are n photons present. A similar description
results for photon-number-resolving detectors and also when a
number of photodetectors are used to detect what path or with
what polarization a photon exits. Yet another example is the
detection of the state of a Rydberg atom by field ionization.
By detecting for what field strength the atom is ionized one
can infer what energy level it most likely would have been
in [18,24]. The distribution functions for when the electron
is released may, however, overlap for different energy levels.
This also results in a measurement of the type in Eq. (1).

There is a technical point which should be mentioned in
order to further justify the generality of our error model. If
the measurement operators �j are proportional to pure state
projectors, then the ideal final measurement in the extended
space can be chosen as a projection in a complete basis,
with each outcome corresponding to one pure basis state |j 〉.
Our model for the imperfect final measurement in Eq. (1)
then directly applies. The measurement operators �j may,
however, also be mixed. This is of course possible to realize
using a final measurement comprising projectors onto more
than one orthonormal state, together with coarse graining in
deciding what the final result is. However, the index j in
q(i|j ) best refers to pure state projectors |j 〉〈j | in the ideal
final measurement, rather than to projectors onto more than
one orthonormal state. This is because the “subprojectors” in
a mixed �j will in general have different misidentification
probabilities and hence would need different q(i|j ).

Nevertheless, also for mixed �j , we may always arrange
for the corresponding final measurement operator to be a pure
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state projector in an extended space. This means that the
description of the imperfect final measurement in Eq. (1) again
applies. For example, suppose that the ideal final measurement
in the extended Hilbert space is described by the two projectors
|1〉SS〈1| + |2〉SS〈2| and |3〉SS〈3|. We may then further couple
the system to a qubit, initially in the state |0〉q , using, e.g., the
unitary operation

U = |1〉SS〈1| ⊗ |0〉qq〈0| + |2〉SS〈2| ⊗ |0〉qq〈0|
+ |1〉SS〈1| ⊗ |1〉qq〈1| + |2〉SS〈2| ⊗ |1〉qq〈1|
+ |3〉SS〈3| ⊗ |1〉qq〈0| + |3〉SS〈3| ⊗ |0〉qq〈1|. (3)

The ideal final measurement may then be realized as a
projective measurement on the qubit, with |0〉qq〈0| corre-
sponding to |1〉SS〈1| + |2〉SS〈2| and |1〉qq〈1| corresponding
to |3〉SS〈3|. This procedure is easily generalized so that any
mixed measurement operators �j will correspond to a pure
state projector.

Related to this, one realizes that it may well be advantageous
to arrange to use as few final measurement states as possible,
since this reduces the complexity of the final detection process,
and we may be able to select the few measurement basis
states with the most favorable q(i|j ). Any extra unitary
transforms prior to the final measurement, including ones
analogous to the one in Eq. (3), are of course also likely to
introduce experimental errors. In this initial work, however,
we want to optimize with respect to imperfections in the
final projective measurement, in order to see what the optimal
unitary transform preceding it would be.

IV. MINIMUM-COST MEASUREMENTS FOR
IMPERFECT DETECTION

We will now derive the optimal minimum-cost strategy
when the final measurement we can realize is restricted, so that
the measurement operators are given by Eq. (1). The measure-
ment we are actually realizing is described by the measurement
operators �̃i , whereas the measurement we are aiming to
realize is described by the measurement operators �j .

To briefly review results related to optimal minimum-cost
measurements [1], suppose that quantum state ρj occurs
with prior probability pj . We choose a measurement with
measurement operators �i , and obtaining result i when the
state prepared was actually ρj carries a cost of Cij . The average
cost will then be given by

C̄ = Tr
∑
ij

Cijpj�iρj = Tr
∑

i

Wi�i = Tr�, (4)

where

Wi =
∑

j

Cijpjρj and � =
∑

i

Wi�i =
∑

i

�iWi (5)

are called the risk operator corresponding to result i and the
Lagrange operator, respectively. � takes care of the constraint∑

i �i = 1 and is Hermitian. For a minimum-error mea-
surement we may choose Cij = −δij and Wi = −piρi . The
minimum-cost measurement operators satisfy the conditions

(Wi − �)�i = �i(Wi − �) = 0∀i, (6)

Wi − � � 0∀i. (7)

Consider now a mixed measurement strategy with measure-
ment operators given by Eq. (1). The average cost for this
measurement strategy will be

C̃ = Tr
∑

i

Wi�̃i = Tr
∑
ijk

Cikpkρkq(i|j )�j

= Tr
∑
jk

C̃jkpkρk�j = Tr
∑

j

W̃j�j , (8)

where

C̃jk =
∑

i

Cikq(i|j ) and W̃j =
∑

k

C̃jkpkρk. (9)

It immediately follows that the ideal strategy we should aim
to perform, if the final measurement has the misidentification
probabilities q(i|j ), is optimal for the modified costs C̃jk and
modified risk operators W̃j . It is also clear that if the states ρj

are orthogonal, corresponding to “perfectly distinguishable”
classical states, then the measurement in the presence of
misidentification probabilities does not change; it remains a
projective measurement on (the subspaces of) the different ρj .
The fact that the measurement strategy changes is in this sense
a quantum feature.

We can freely choose which final measurement basis states
are assigned to which initial state ρi , and should choose so that
the obtained cost is optimal. This can be done by checking what
the optimal measurement is for each possible assignment and
picking the best one; there are m! assignments if there are m

basis states. Roughly speaking, the most probable initial states
should be associated with those basis states which we can
identify most accurately. Related to this, if the final detection
process is defective enough, then for some assignments it may
happen that when a final outcome i is obtained this is more
likely to have occurred as a result of another initial state ρj

than the initial state ρi itself. As a particularly simple example,
consider distinguishing with minimum error between the
orthogonal states |0〉 and |1〉, occurring with probabilities p0

and p1. We make an imperfect projection in the {|0〉,|1〉} basis,
with �̃0 = q(0|0)|0〉〈0| + q(0|1)|1〉〈1|,�̃1 = q(1|0)|0〉〈0| +
q(1|1)|1〉〈1|. If, for example, q(0|1)p1 > q(0|0)p0, then the
final result “0” is more likely to have occurred because the
state was |1〉 rather than |0〉, and we should guess “|1〉” even if
we obtain result “0.” We should therefore also check what the
optimal cost is for different reassignments of final outcomes
to other states.

Nevertheless, checking all possible different assignments
of outcomes, in order to obtain the overall optimal detection
strategy for imperfect detection, is straightforward if there
is a finite number of outcomes. We will proceed to look at
examples.

A. Distinguishing between two nonorthogonal states

Suppose that we want to distinguish between ρ0

and ρ1, occurring with prior probabilities p0 and p1,
with minimum cost, with misidentification probabilities
q(0|0),q(0|1),q(1|0),q(1|1). The cost of obtaining result i

when the prepared state was j is Cij , for i,j = 0,1. The ideal
measurement strategy we should try to implement is optimal
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for the modified risk operators

W̃0 = C̃00p0ρ0 + C̃01p1ρ1,
(10)

W̃1 = C̃10p0ρ0 + C̃11p1ρ1.

The optimal measurement for distinguishing between two
nonorthogonal states with minimum cost was given by Hel-
strom [1]. It is a projection in the eigenbasis of the operator
Õ = W̃0 − W̃1. Using the first equation in Eq. (9) and the
second equation in Eq. (1), we find that

Õ = [q(0|0) + q(1|1) − 1](W0 − W1). (11)

This means that unless q(0|0) + q(1|1) = 1, Õ is proportional
to W0 − W1, and therefore the measurement strategy we should
aim to implement does not change when detection is imperfect,
no matter how asymmetric the misidentification probabilities
are. If q(0|0) + q(1|1) > 1, then the optimal �0 is a projector
onto the eigenstates of Õ with negative eigenvalues, and �1

is a projector onto the eigenstates with positive eigenvalues.
If there are any zero eigenvalues, then the corresponding
eigenstates may be assigned to either result without changing
the average cost. If the results are sufficiently “scrambled,”
more precisely, when q(0|0) + q(1|1) < 1, we should still
perform the same measurement, but with �0 and �1 swapped.
If q(0|0) + q(1|1) = 1, then this implies q(1|1) = q(1|0)
and q(0|0) = q(0|1), i.e., that the measurement results are
completely random. There is then no point in making a
measurement at all. We should just pick the ρi which gives
the least average cost based on the prior probabilities and
costs Cij .

Even though the measurement strategy we should aim for
does not change, the minimum cost, given in Eq. (8), does
of course increase as compared with the cost for the ideal
measurement. These results also hold for the special case
of distinguishing between ρ0 and ρ1 with minimum error.
The strategy we should try to implement stays the same,
but the error probability increases. That this holds even when
the misidentification probabilities q(i|j ) are not symmetric is
not entirely intuitive.

B. Distinguishing between three symmetric states

We will now see that when distinguishing between three
pure quantum states the measurement strategy we should aim
for may change when the detection is imperfect. Consider the
three equiprobable states

|ψ1〉 = −|0〉,|ψ2〉 = 1

2
(|0〉+

√
3)|1〉,|ψ3〉=1

2
(|0〉 −

√
3)|1〉.

(12)

The ideal measurement that distinguishes between these states
with minimum error has the measurement operators �i =
2/3|ψi〉〈ψi | = 2/3ρi for i = 1,2,3 [1,2,9].

Suppose now that in the final detection outcome 1 is some-
times misidentified as outcome 2 or 3 with equal probability
q, but that otherwise the detection is perfect. That is, we have
q(1|1) = 1 − 2q and q(2|1) = q(3|1) = q, with 0 � q � 1/2.
Also, q(2|2) = q(3|3) = 1 and q(1|2) = q(3|2) = q(1|3) =
q(2|3) = 0. We find C̃11 = 2q − 1,C̃12 = C̃13 = −q,C̃22 =

1

2

q  qc

3

1

2

3

0 < q < qc

1

2

3

q = 0

(a) (b) (c)
0 0 0

111

FIG. 1. (Color online) The optimal measurement operators we
should aim for when distinguishing between the three symmetric
quantum states in Eq. (12), when the final detection is imperfect so
that outcome 1 is misidentified as outcome 2 or 3 with probability q.
The states to be distinguished are shown using dotted arrows (red),
and the measurement operators are (un-normalized) projectors onto
the states indicated by solid arrows (blue). The basis states |0〉 and
|1〉 are indicated with dashed arrows (black). In (a), the detection is
perfect, and the measurement operators are proportional to projectors
onto the states themselves. In (b), 0 < q < qc, and, in (c), q � qc. It
pays to concentrate more on the states we can identify more reliably.

C̃33 = −1, and all other C̃ij = 0. Furthermore,

W̃1 = 1

3
[(2q − 1)ρ1 − q(ρ2 + ρ3)] ,

W̃2 = −1

3
ρ2, W̃3 = −1

3
ρ3. (13)

The optimal measurements for such mirror-symmetric situ-
ations are known [25,26]. For small q, the optimal strategy
has three measurement operators. When q increases, it pays
less and less try to identify |ψ1〉, and the trace a of �1 = aρ1

decreases, starting from 2/3. At the same time, Tr�2 = Tr�3

increases. �2,3 are un-normalized projectors onto pure states
that become closer and closer to |±〉 = 1/

√
2(|0〉 ± |1〉). When

q � qc = (1 + 1/
√

3)/2 ≈ 0.211, a = 0 and the optimal mea-
surement has only two nonzero measurement operators. Then
�1 = 0, and �2,3 are projectors onto the states |±〉. This
remains optimal for all qc � q � 1/2. Thus, for any nonzero
value of q, the measurement we should aim for is different
from the optimal minimum-error measurement for q = 0. This
is illustrated in Fig. 1.

The case we have considered, distinguishing between
three or more symmetric states, is relevant for quantum key
distribution (QKD) (see, e.g., [27] and references therein). As
argued above, our detection error model directly applies to
photodetection. In a realization of similar QKD protocols, it is
therefore likely that optimal operation would require similar
modifications of the measurements performed.

V. CONCLUSIONS

Knowledge of optimal quantum measurements for realistic
experimental components is important in order to be able to
select the best possible measurements for a given situation. In
this paper, we derived the optimal minimum-cost measurement
one should aim to implement for a general model of imperfect
detection. When a perfect measurement would have given
result j , then the detection gives result i with probability
q(i|j ). This leads to a modification of the costs of different
outcomes and hence the measurement strategy we should
aim to implement in general changes. In the special case of
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distinguishing between two quantum states, the measurement
stays the same, and only the cost changes. For three states
we gave a simple example, relevant, e.g., for quantum key
distribution, where the optimal measurement strategy changes
if the detection is imperfect.

It should be noted that for any kind of state discrimination,
not just minimum-error discrimination, the case where several
copies of the states to be distinguished are available is naturally
accounted for. If we, for example, are given N copies of a
state ρj , then the optimal measurement can be found (both
in the ideal case and when the final detection is imperfect)
by distinguishing instead between the states {ρ⊗N

j }. The
optimal measurement strategy then is not restricted to separate
measurements on the individual copies.

One should also note that, somewhat related to the results
in [20], we may use cloning in the final measurement
basis in order to “purify” an imperfect measurement. That
is, if the final ideal measurement would be a projective
measurement in the basis {|j 〉}, then we may use cloning
in this basis, C(ρ) = ∑

j 〈j |ρ|j 〉|j 〉〈j |⊗M , to improve the
effective misidentification probabilities. Following the cloning
transform, we use the imperfect measurement M times, once
on each cloned copy, and then pick the most advantageous final
outcome based on the relative frequencies of different results.
In particular, in the limit of M → ∞, we can effectively
implement a perfect projection in the basis {|j 〉}, since then
we can tell from the frequencies of the different results i,
which are determined by q(i|j ), what the correct result j

would have been. Nevertheless, such a cloning procedure

is likely to introduce further errors in the measurement due
to its complexity, in case it is at all possible to implement.
Therefore it may well be advantageous, when errors in the
transform prior to the final measurement are also taken into
account, to keep the measurement procedure as simple as
possible. What is provided in this paper is a way to optimize
a minimum-error measurement once we have settled on a
particular final imperfect detection process, characterized by
some fixed misidentification probabilities q(i|j ).

It would be interesting to investigate how imperfect
detection affects other types of measurements, such as un-
ambiguous or error-free measurements [2]. If the detection
is imperfect, then it may not be possible to distinguish
some states unambiguously anymore. We should then instead
consider a maximum confidence measurement [28]. Also,
errors in an experimental realization will not only come
from imperfections in the final detection but necessarily and
importantly also from errors in operations on the system to
be measured prior to the final detection. Finding optimal
measurements for such imperfections will be the subject of
further work.
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