1,043 research outputs found

    An Algorithm for Grouping Lines Which Converge to Vanishing Points in Perspective Sketches of Polyhedra

    Get PDF
    We seek to detect the vanishing points implied by design sketches of engineering products. Adapting previous ap- proaches, developed in computer vision for analysis of vectorised photographic images, is unsatisfactory, as they do not allow for the inherent imperfection of sketches. Human perception seems not to be disturbed by such imperfections. Hence, we have de- signed and implemented a vanishing point detection algorithm which mimics the human perception process and tested it with perspective line drawings derived from engineering sketches of polyhedral objects. The new algorithm is fast, easily- implemented, returns the approximate locations of the main vanishing points and identifies those groups of lines in 2D which correspond to groups of parallel edges in the 3D object

    Algorithms for sketching surfaces

    Get PDF
    CISRG discussion paper ; 1

    Towards extracting artistic sketches and maps from digital elevation models

    Get PDF
    The main trend of computer graphics is the creation of photorealistic images however, there is increasing interest in the simulation of artistic and illustrative techniques. This thesis investigates a profile based technique for automatically extracting artistic sketches from regular grid digital elevation models. The results resemble those drawn by skilled cartographers and artists.The use of cartographic line simplification algorithms, which are usually applied to complex two-dimensional lines such as coastlines, allow a set of most important points on the terrain surface to be identified, these form the basis for sketching.This thesis also contains a wide ranging review of terrain representation techniques and suggests a new taxonomy

    Application of Machine Learning within Visual Content Production

    Get PDF
    We are living in an era where digital content is being produced at a dazzling pace. The heterogeneity of contents and contexts is so varied that a numerous amount of applications have been created to respond to people and market demands. The visual content production pipeline is the generalisation of the process that allows a content editor to create and evaluate their product, such as a video, an image, a 3D model, etc. Such data is then displayed on one or more devices such as TVs, PC monitors, virtual reality head-mounted displays, tablets, mobiles, or even smartwatches. Content creation can be simple as clicking a button to film a video and then share it into a social network, or complex as managing a dense user interface full of parameters by using keyboard and mouse to generate a realistic 3D model for a VR game. In this second example, such sophistication results in a steep learning curve for beginner-level users. In contrast, expert users regularly need to refine their skills via expensive lessons, time-consuming tutorials, or experience. Thus, user interaction plays an essential role in the diffusion of content creation software, primarily when it is targeted to untrained people. In particular, with the fast spread of virtual reality devices into the consumer market, new opportunities for designing reliable and intuitive interfaces have been created. Such new interactions need to take a step beyond the point and click interaction typical of the 2D desktop environment. The interactions need to be smart, intuitive and reliable, to interpret 3D gestures and therefore, more accurate algorithms are needed to recognise patterns. In recent years, machine learning and in particular deep learning have achieved outstanding results in many branches of computer science, such as computer graphics and human-computer interface, outperforming algorithms that were considered state of the art, however, there are only fleeting efforts to translate this into virtual reality. In this thesis, we seek to apply and take advantage of deep learning models to two different content production pipeline areas embracing the following subjects of interest: advanced methods for user interaction and visual quality assessment. First, we focus on 3D sketching to retrieve models from an extensive database of complex geometries and textures, while the user is immersed in a virtual environment. We explore both 2D and 3D strokes as tools for model retrieval in VR. Therefore, we implement a novel system for improving accuracy in searching for a 3D model. We contribute an efficient method to describe models through 3D sketch via an iterative descriptor generation, focusing both on accuracy and user experience. To evaluate it, we design a user study to compare different interactions for sketch generation. Second, we explore the combination of sketch input and vocal description to correct and fine-tune the search for 3D models in a database containing fine-grained variation. We analyse sketch and speech queries, identifying a way to incorporate both of them into our system's interaction loop. Third, in the context of the visual content production pipeline, we present a detailed study of visual metrics. We propose a novel method for detecting rendering-based artefacts in images. It exploits analogous deep learning algorithms used when extracting features from sketches

    A deep learning approach to clustering visual arts

    Full text link
    Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS: a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the raw input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.Comment: Submitted to IJC

    How2Sketch: Generating Easy-To-Follow Tutorials for Sketching 3D Objects

    Get PDF
    Accurately drawing 3D objects is difficult for untrained individuals, as it requires an understanding of perspective and its effects on geometry and proportions. Step-by-step tutorials break the complex task of sketching an entire object down into easy-to-follow steps that even a novice can follow. However, creating such tutorials requires expert knowledge and is a time-consuming task. As a result, the availability of tutorials for a given object or viewpoint is limited. How2Sketch addresses this problem by automatically generating easy-to-follow tutorials for arbitrary 3D objects. Given a segmented 3D model and a camera viewpoint,it computes a sequence of steps for constructing a drawing scaffold comprised of geometric primitives, which helps the user draw the final contours in correct perspective and proportion. To make the drawing scaffold easy to construct, the algorithm solves for an ordering among the scaffolding primitives and explicitly makes small geometric modifications to the size and location of the object parts to simplify relative positioning. Technically, we formulate this scaffold construction as a single selection problem that simultaneously solves for the ordering and geometric changes of the primitives. We demonstrate our algorithm for generating tutorials on a variety of man-made objects and evaluate how easily the tutorials can be followed with a user study
    • …
    corecore