23 research outputs found

    Revisión sistemática del uso de Blockchains en datos clínicos y su aplicación en Colombia

    Get PDF
    Trabajo de investigaciónEste documento presenta una revisión sistemática realizada en 3 fuentes de datos como IEEE, Scopus y Web of Science, buscando una síntesis de información para visualizar qué aplicaciones o desarrollos hay en el mundo acerca de blockchain, qué temas y soluciones abarca, qué se está tratando, qué implantaciones hay en curso y cuáles son los retos actuales y futuros para de esta manera divisar cuáles pueden ser los campos en los que esta tecnología se incorpore en la salud colombiana.INTRODUCCIÓN 1. GENERALIDADES 2. PLANIFICACIÓN DE LA REVISIÓN SISTEMÁTICA 3. RESULTADOS 4. DESARROLLO DE LA PROPUESTA CONCLUSIONES RECOMENDACIONES BIBLIOGRAFÍA ANEXOSPregradoIngeniero de Sistema

    Dynamic Data Replication for Higher Availability and Security

    Get PDF
    The paradigm and domain of data security is the key point as per the current era in which the data is getting transmitted to multiple channels from multiple sources. The data leakage and security loopholes are enormous and there is need to enforce the higher levels of security, privacy and integrity. Such sections incorporate e-administration, long range interpersonal communication, internet business, transportation, coordinations, proficient correspondences and numerous others. The work on security and trustworthiness is very conspicuous in the systems based situations and the private based condition. This examination original copy is exhibiting the efficacious use of security based methodology towards the execution with blockchain programming utilizing robustness and different devices. The blockchain based mix is currently days utilized for e-administrations and military applications for the noticeable security based applications. To work with the high performance approaches and algorithms, the blockchain technology is quite prominent and used in huge performance aware patterns whereby the need to enforce the security is there. The work integrates the usage patterns of blockchain technologies so that the overall security and integrity can be improved in which there is immutability and strength based algorithms for enforce the security measures

    Business Process Compliance and Blockchain: How Does the Ethereum Blockchain Address Challenges of Business Process Compliance?

    Get PDF
    Second generation blockchain technologies such as Ethereum can be used not only for financial transactions but also for cross-organizational processes, for applications in the pharmaceutical industry and even in the field of Business Process Compliance (BPC). However, there are many challenges in the field of BPC. Thus, we raised the following research question: How does the Ethereum blockchain address challenges of BPC? To answer this question, we conducted a structured literature review to identify challenges in BPC as well as features of the Ethereum blockchain that may solve the selected BPC challenges. As a result, we identified 21 BPC challenges and categorized these into legal, organizational, human-centered, technical and economic challenges. We found that the technical and organizational BPC challenges were those that Ethereum could best solve, while human-centered challenges could be less well addressed. Furthermore, the implementation of the Ethereum blockchain leads to additional challenges, such as the immutability of illegal content within the Ethereum blockchain or the error-proneness and zero-defect tolerance of smart contracts

    Neuroadaptive incentivization in healthcare using Blockchain and IoT

    Get PDF
    Financially incentivizing health-related behaviors can improve health record outcomes and reduce healthcare costs. Blockchain and IoT technologies can be used to develop safe and transparent incentive schemes in healthcare. IoT devices, such as body sensor networks and wearable sensors, etc. connect the physical and digital world making it easier to collect useful health-related data for further analysis. There are, however, many security and privacy issues with the use of IoT. Some of these IoT security issues can be alleviated using Blockchain technology. Incorporating neuroadaptive technology can result in more personalized and effective therapies using machine learning algorithms and real-time feedback. The research investigates the possibilities of neuroadaptive incentivization in healthcare using Blockchain and IoT on patient health records. The core idea is to incentivize patients to keep their health parameters within standard range thereby reducing the load on healthcare system. In summary, we have presented a proof of concept for neuroadaptive incentivization in healthcare using Blockchain and IoT and discuss various applications and implementation challenges

    Blockchain-based Architecture for Secured Cyberattack Signatures and Features Distribution

    Full text link
    One effective way of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Despite the increased accuracy of IDSs, distributed or coordinated attacks can still go undetected because of the single vantage point of the IDSs. Due to this reason, there is a need for attack characteristics\u27 exchange among different IDS nodes. Another reason for IDS coordination is that a zero-day attack (an attack without a known signature) experienced in organizations located in different regions is not the same. Collaborative efforts of the participating IDS nodes can stop more attack threats if IDS nodes exchange these attack characteristics among each other. Researchers proposed a cooperative intrusion detection system (CoIDS) to share these attack characteristics effectively. Although this solution enhanced IDS node’s ability to respond to attacks previously identified by cooperating IDSs, malicious activities such as fake data injection, data manipulation or deletion, data integrity, and consistency are problems threatening this approach. In this dissertation, we develop a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The developed architecture achieves this result by continuously monitoring blockchain nodes\u27 behavior to detect and prevent malicious activities from both outsider and insider threats. Apart from this, the architecture facilitates scalable attack characteristics’ exchange among IDS nodes and ensures heterogeneous IDS participation. It is also robust to public IDS nodes joining and leaving the network. The security analysis result shows that the architecture can detect and prevent malicious activities from both outsider and insider attackers, while performance analysis shows scalability with low latency

    Benefits of Blockchain Initiatives for Value-Based Care: Proposed Framework

    Get PDF
    Background The potential of blockchain technology to achieve strategic goals, such as value-based care, is increasingly being recognized by both researchers and practitioners. However, current research and practices lack comprehensive approaches for evaluating the benefits of blockchain applications. Objective The goal of this study was to develop a framework for holistically assessing the performance of blockchain initiatives in providing value-based care by extending the existing balanced scorecard (BSC) evaluation framework. Methods Based on a review of the literature on value-based health care, blockchain technology, and methods for evaluating initiatives in disruptive technologies, we propose an extended BSC method for holistically evaluating blockchain applications in the provision of value-based health care. The proposed method extends the BSC framework, which has been extensively used to measure both financial and nonfinancial performance of organizations. The usefulness of our proposed framework is further demonstrated via a case study. Results We describe the extended BSC framework, which includes five perspectives (both financial and nonfinancial) from which to assess the appropriateness and performance of blockchain initiatives in the health care domain. Conclusions The proposed framework moves us toward a holistic evaluation of both the financial and nonfinancial benefits of blockchain initiatives in the context of value-based care and its provision

    FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data

    Full text link
    Secure and scalable data sharing is essential for collaborative clinical decision making. Conventional clinical data efforts are often siloed, however, which creates barriers to efficient information exchange and impedes effective treatment decision made for patients. This paper provides four contributions to the study of applying blockchain technology to clinical data sharing in the context of technical requirements defined in the "Shared Nationwide Interoperability Roadmap" from the Office of the National Coordinator for Health Information Technology (ONC). First, we analyze the ONC requirements and their implications for blockchain-based systems. Second, we present FHIRChain, which is a blockchain-based architecture designed to meet ONC requirements by encapsulating the HL7 Fast Healthcare Interoperability Resources (FHIR) standard for shared clinical data. Third, we demonstrate a FHIRChain-based decentralized app using digital health identities to authenticate participants in a case study of collaborative decision making for remote cancer care. Fourth, we highlight key lessons learned from our case study

    Implementation model of an integrated blockchain and IOT system to healthcare ecosystem

    Get PDF
    Mestrado em Gestão de Sistemas de InformaçãoNo cenário de transformação digital em que estão inseridos todos os setores de atividade, para melhorar a eficiência, a produtividade e reduzir o tempo e os custos, é necessário investir em novas tecnologias. Novas tecnologias como Internet of Things (IoT) e Blockchain são desenvolvidas para melhorar a eficiência de processamento, a criação de oportunidades de negócios, a regulamentação de requisitos, a segurança e transparência e descentralização de informações, e provavelmente serão as próximas tecnologias disruptivas que transformaram os diversos setores de atividade. Por sua vez, o setor saúde tem enfrentado dificuldades com o surgimento de novas doenças e precisa se transformar e se reinventar para manter sua legitimidade e continuar cumprindo suas obrigações para com os cidadãos. A implementação de novas tecnologias acaba sendo uma das abordagens mais eficazes para aumentar a eficiência, segurança, gerenciamento, análise de big data e performance dos dados. Devido a isso, este projeto propõe um modelo de framework Blockchain e IOT aplicada a saúde. A implementação engloba a criação de um aplicativo (i.e., pacientes) e um site (i.e., médicos, hospitais, farmácias, saúde publica), os dados partilhados pelos usuários são armazenados no blockchain conectado ao aplicativo e o acesso ao Blockchain é liberado por smartcontracts. O objetivo do modelo proposto é que os dados sejam descentralizados e possibilita o acesso a todos os conectados ao blockchain. E para não infringir a proteção dos dados pessoais dos pacientes, foi tomado o cuidado de que o usuário paciente seja o “proprietário” de todos os seus dados e compartilhe-os com qualquer entidade de saúde que deseja. Para atingir os objetivos mencionados, foi definida uma metodologia de validação por conceito do modelo proposto. A validação do conceito do modelo foi dividida em cinco etapas, seguida da análise qualitativa das entrevistas semiestruturadas realizadas com pacientes, médicos e gestores de saúde. Como resultado da validação por conceito foi observado que a opinião de todos os entrevistados é que a implementação do modelo proposto é vantajosa e poderá contribuir com avanços no setor saúde. Portanto, uma vez que médicos e hospitais tenham acesso a mais dados de saúde dos pacientes, esses dados podem colaborar para um diagnóstico mais preciso e o ecossistema da saúde obtém avanços tecnológicos que contribuem para uma melhor gestão dos dados e combate as novas doenças.In the digital transformation scenario in which all sectors of activity are inserted, to improve efficiency, productivity and reduce time and costs, it is necessary to invest in new technologies. New technologies such as Internet of Things (IoT) and Blockchain are being developed to improve processing efficiency, the creation of business opportunities, requirements regulation, security and transparency and information decentralization, and are likely to be the next disruptive technologies that have transformed the various sectors of activity. In turn, the health sector has confronted difficulties with the emergence of new diseases and needs to transform and reinvent itself in order to maintain its legitimacy and continue to fulfill its obligations to citizens. The implementation of new technologies is one of the most effective approaches to increase efficiency, security, management, big data analysis and data performance. Because of this, this project proposes a Blockchain and IOT framework model applied to health. The implementation includes the creation of an application (ie, patients) and a website (ie, doctors, hospitals, pharmacies, public health), the data shared by users is stored on the blockchain connected to the application and access to the Blockchain is released by smart contracts. The aim of the suggested model is that the data is decentralized and allows access to all those connected to the blockchain. And in order not to infringe on the protection of patients' personal data, care has been taken that the patient user is the “owner” of all his data and shares it with any health entity he wishes. To achieve the objectives was applied a validation methodology by concept of the proposed model. The validation of the model concept was divided into five stages, followed by a qualitative analysis of the semi-structured interviews conducted with patients, doctors and health managers. As a result of the concept validation, it was observed that the opinion of all interviewees is that the implementation of the proposed model is advantageous and may contribute to advances in the health ecosystem. Therefore, once doctors and hospitals have access to more patients health data, these data can collaborate for a more accurate diagnosis and the health ecosystem obtains technological advances that contribute to better data management and to fight new diseases.info:eu-repo/semantics/publishedVersio
    corecore