1,174 research outputs found

    Spectral Clustering and Integration: The Inner Dynamics of Computational Geometry and Spatial Morphology

    Get PDF
    Deviating from common evaluation strategies of spatial networks that are realised through numerical comparison of single floating-point numbers such as global and local space syntax measures (centralities, connectivity, etc.) we aim to present a new computational methodology for creating detailed topo-geometric encodings of spaces that encapsulate some of the fundamental ideas about spatial morphology by Hillier (Space is the Machine: A Configurational Theory of Architecture, London, UK, Space Syntax, 2007 [1]). In most cases, space syntax measures try to capture a particular quality of the space for comparison but they lose much of the detail of the spatial topo-geometry and morphology by mainly aggregating graph path traversals and not retaining any other information. This research explores the use of weighted graph spectra, in a composite form, for the purpose of characterising the spatial structure as a whole. The new methodology focuses on the three primary space syntax graph modelling concepts, ‘angular’, ‘metric’ and ‘topological’, from the point of view of the resulting spatial geometries and develops new computational innovations in order to map spatial penetration of local neighbourhood spectra in different scales, dimensions and built environment densities in a continues way. The result is a new composite vector of high dimensionality that can be easily measured against others for detailed comparison. The proposed methodology is then demonstrated with the complete road-network dataset of Great Britain. The main dataset together with subsets is then used in a series of unsupervised machine learning analyses, including clustering and a form of Euclidian ‘spectral integration’

    VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene

    Full text link
    High-definition (HD) map serves as the essential infrastructure of autonomous driving. In this work, we build up a systematic vectorized map annotation framework (termed VMA) for efficiently generating HD map of large-scale driving scene. We design a divide-and-conquer annotation scheme to solve the spatial extensibility problem of HD map generation, and abstract map elements with a variety of geometric patterns as unified point sequence representation, which can be extended to most map elements in the driving scene. VMA is highly efficient and extensible, requiring negligible human effort, and flexible in terms of spatial scale and element type. We quantitatively and qualitatively validate the annotation performance on real-world urban and highway scenes, as well as NYC Planimetric Database. VMA can significantly improve map generation efficiency and require little human effort. On average VMA takes 160min for annotating a scene with a range of hundreds of meters, and reduces 52.3% of the human cost, showing great application value

    Mapping in urban environment for autonomous vehicle

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    AutoGraph: Predicting Lane Graphs from Traffic Observations

    Full text link
    Lane graph estimation is a long-standing problem in the context of autonomous driving. Previous works aimed at solving this problem by relying on large-scale, hand-annotated lane graphs, introducing a data bottleneck for training models to solve this task. To overcome this limitation, we propose to use the motion patterns of traffic participants as lane graph annotations. In our AutoGraph approach, we employ a pre-trained object tracker to collect the tracklets of traffic participants such as vehicles and trucks. Based on the location of these tracklets, we predict the successor lane graph from an initial position using overhead RGB images only, not requiring any human supervision. In a subsequent stage, we show how the individual successor predictions can be aggregated into a consistent lane graph. We demonstrate the efficacy of our approach on the UrbanLaneGraph dataset and perform extensive quantitative and qualitative evaluations, indicating that AutoGraph is on par with models trained on hand-annotated graph data. Model and dataset will be made available at redacted-for-review.Comment: 8 pages, 6 figure

    Pix2Map: Cross-modal Retrieval for Inferring Street Maps from Images

    Full text link
    Self-driving vehicles rely on urban street maps for autonomous navigation. In this paper, we introduce Pix2Map, a method for inferring urban street map topology directly from ego-view images, as needed to continually update and expand existing maps. This is a challenging task, as we need to infer a complex urban road topology directly from raw image data. The main insight of this paper is that this problem can be posed as cross-modal retrieval by learning a joint, cross-modal embedding space for images and existing maps, represented as discrete graphs that encode the topological layout of the visual surroundings. We conduct our experimental evaluation using the Argoverse dataset and show that it is indeed possible to accurately retrieve street maps corresponding to both seen and unseen roads solely from image data. Moreover, we show that our retrieved maps can be used to update or expand existing maps and even show proof-of-concept results for visual localization and image retrieval from spatial graphs.Comment: 12 pages, 8 figure
    corecore