12,072 research outputs found

    A complete family of separability criteria

    Get PDF
    We introduce a new family of separability criteria that are based on the existence of extensions of a bipartite quantum state ρ\rho to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the non-existence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program (SDP). Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known Positive Partial Transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that in turn allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP-hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.Comment: 21 pages. Expanded introduction. References added, typos corrected. Accepted for publication in Physical Review

    A Brane World Perspective on the Cosmological Constant and the Hierarchy Problems

    Full text link
    We elaborate on the recently proposed static brane world scenario, where the effective 4-D cosmological constant is exponentially small when parallel 3-branes are far apart. We extend this result to a compactified model with two positive tension branes. Besides an exponentially small effective 4-D cosmological constant, this model incorporates a Randall-Sundrum-like solution to the hierarchy problem. Furthermore, the exponential factors for the hierarchy problem and the cosmological constant problem obey an inequality that is satisfied in nature. This inequality implies that the cosmological constant problem can be explained if the hierarchy problem is understood. The basic idea generalizes to the multibrane world scenario. We discuss models with piecewise adjustable bulk cosmological constants (to be determined by the 5-dimensional Einstein equation), a key element of the scenario. We also discuss the global structure of this scenario and clarify the physical properties of the particle (Rindler) horizons that are present. Finally, we derive a 4-D effective theory in which all observers on all branes not separated by particle horizons measure the same Newton's constant and 4-D cosmological constant.Comment: revtex, 63 pages, 8 figures, one table, revised version, more discussions on the global structure, references adde

    Convex cocompactness and stability in mapping class groups

    Full text link
    We introduce a strong notion of quasiconvexity in finitely generated groups, which we call stability. Stability agrees with quasiconvexity in hyperbolic groups and is preserved under quasi-isometry for finitely generated groups. We show that the stable subgroups of mapping class groups are precisely the convex cocompact subgroups. This generalizes a well-known result of Behrstock and is related to questions asked by Farb-Mosher and Farb.Comment: 15 pages, 1 figur

    Lectures on walking technicolor, holography and gauge/gravity dualities

    Full text link
    Dynamical electro-weak symmetry breaking is an appealing, strongly-coupled alternative to the weakly-coupled models based on an elementary scalar field developing a vacuum expectation value. In the first two sections of this set of lectures, I summarize the arguments, based on low-energy phenomenology, supporting walking technicolor as a realistic realization of this idea. This pedagogical introduction to walking technicolor, and more generally to the physics of extensions of the standard model, makes extensive use of effective field theory arguments, symmetries and counting rules. The strongly-coupled nature of the underlying interactions, and the peculiar quasi-conformal behavior of the theory, require to use non-perturbative methods in order to address many fundamental questions within this framework. The recent development of gauge/gravity dualities provides an ideal set of such non-perturbative instruments. The remaining two sections illustrate the potential of these techniques with two technical examples, one within the bottom-up phenomenological approach to holography in five-dimensions, the other within a more systematic top-down construction derived from ten-dimensional type-IIB supergravity.Comment: 67 pages, 16 figures

    On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces

    Full text link
    The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supersymmetric versions of the Gauss-Weingarten equations is performed. A supersymmetric generalization of the conjecture establishing the necessary conditions for a system to be integrable in the sense of soliton theory is formulated and illustrated by the examples of supersymmetric versions of the sine-Gordon equation and the Gauss-Codazzi equations

    The Big Constant Out, The Small Constant In

    Get PDF
    Some time ago, Tseytlin has made an original and unusual proposal for an action that eliminates an arbitrary cosmological constant. The form of the proposed action, however, is strongly modified by gravity loop effects, ruining its benefit. Here I discuss an embedding of Tseytlin's action into a broader context, that enables to control the loop effects. The broader context is another universe, with its own metric and dynamics, but only globally connected to ours. One possible Lagrangian for the other universe is that of unbroken AdS supergravity. A vacuum energy in our universe does not produce any curvature for us, but instead increases or decreases the AdS curvature in the other universe. I comment on how to introduce the accelerated expansion in this framework in a technically natural way, and consider the case where this is done by the self-accelerated solutions of massive gravity and its extensions.Comment: 14 pages; a brief paragraph unfolded; 3 refs added; minor improvement
    corecore