12 research outputs found

    Detecting Depression Using Single-Channel EEG and Graph Methods

    Get PDF
    Objective: This paper applies graph methods to distinguish major depression disorder (MDD) and healthy (H) subjects using the graph features of single-channel electroencephalogram (EEG) signals. Methods: Four network features—graph entropy, mean degree, degree two, and degree three—were extracted from the 19-channel EEG signals of 64 subjects (26 females and 38 males), and then these features were forwarded to a support vector machine to conduct depression classification based on the eyes-open and eyes-closed statuses, respectively. Results: Statistical analysis showed that graph features with degree of two and three, the graph entropy of MDD was significantly lower than that for H (p < 0.0001). Additionally, the accuracy of detecting MDD using single-channel T4 EEG with leave-one-out cross-validation from H was 89.2% and 92.0% for the eyes-open and eyes-closed statuses, respectively. Conclusion: This study shows that the graph features of a short-term EEG can help assess and evaluate MDD. Thus, single-channel EEG signals can be used to detect depression in subjects. Significance: Graph feature analysis discovered that MDD is more related to the temporal lobe than the frontal lobe

    Physiological complexity of EEG as a proxy for dementia risk prediction: a review and preliminary cross-section analysis

    Full text link
    The aim of this work is to give the readers a review (perspective) of prior work on this kind of complexity-based detection from resting-state EEG and present our preliminary cross-section analysis results on how EEG complexity of supposedly healthy senior persons can serve as an early warning to clinicians. Together with the use of wearables for health, this approach to early detection can be done out of clinical setting improving the chances of increasing the quality of life in seniors.Comment: 19 pages, 1 figure, 1 tabl

    Complexity Analysis of EEG Data in Persons With Depression Subjected to Transcranial Magnetic Stimulation

    Get PDF
    Aim: The aim of this work was to study the neurophysiological effect of repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (DLPFC) in 8 patients with major depression disorder (MDD) and 10 patients with bipolar disorder (BP), considering separately responders and non-responders to rTMS therapy in each of both groups.Methods: The Higuchi’s Fractal Dimension (FD) was analyzed from 64-channels EEG signals in five physiological frequency bands and every channel separately. Changes of FD were analyzed before and after 1st, 10th, and 20th session of rTMS.Results: Some differences in response to the rTMS therapy was found across individual groups. In MDD responders, FD decreased in all bands after longer stimulation (20th session). Whereas, in BP non-responders, FD decreased after 1st session in all bands as well as after 10th session in lower frequencies (delta and theta). In MDD non-responders and BP responders FD increased at the beginning of the therapy (1st and 10th session, respectively), but the final FD value did not changed in comparison to the initial FD value, except the FD decrease for theta band in BP responders. Comparison between groups showed a higher FD in MDD responders than in MDD non-responders in every band before as well as after stimulation. In contrast to MDD patients, FD was lower in BP responders than in BP non-responders in higher frequency bands (alpha, beta, and gamma) in both conditions as well as in lower frequency bands (delta and theta) after stimulation. Comparing both groups of responders, FD was lower in MDD than in BP in every band, except alpha. In case of non-responders, FD was higher in BP than in MDD in all bands in both conditions.Conclusion: The results showed that FD may be useful marker for evaluation of the rTMS effectiveness and the therapy progress as well as for group differentiation between MDD and BP or between responders and non-responders. The changes of FD under the influence of rTMS allow to unambiguously conclude whether the effect of stimulation is positive or negative as well as allow to evaluate an optimal time of rTMS

    Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months

    Get PDF
    BACKGROUND: Early identification of autism spectrum disorder (ASD) provides an opportunity for early intervention and improved developmental outcomes. The use of electroencephalography (EEG) in infancy has shown promise in predicting later ASD diagnoses and in identifying neural mechanisms underlying the disorder. Given the high co-morbidity with language impairment, we and others have speculated that infants who are later diagnosed with ASD have altered language learning, including phoneme discrimination. Phoneme learning occurs rapidly in infancy, so altered neural substrates during the first year of life may serve as early, accurate indicators of later autism diagnosis. METHODS: Using EEG data collected at two different ages during a passive phoneme task in infants with high familial risk for ASD, we compared the predictive accuracy of a combination of feature selection and machine learning models at 6 months (during native phoneme learning) and 12 months (after native phoneme learning), and we identified a single model with strong predictive accuracy (100%) for both ages. Samples at both ages were matched in size and diagnoses (n = 14 with later ASD; n = 40 without ASD). Features included a combination of power and nonlinear measures across the 10‑20 montage electrodes and 6 frequency bands. Predictive features at each age were compared both by feature characteristics and EEG scalp location. Additional prediction analyses were performed on all EEGs collected at 12 months; this larger sample included 67 HR infants (27 HR-ASD, 40 HR-noASD). RESULTS: Using a combination of Pearson correlation feature selection and support vector machine classifier, 100% predictive diagnostic accuracy was observed at both 6 and 12 months. Predictive features differed between the models trained on 6- versus 12-month data. At 6 months, predictive features were biased to measures from central electrodes, power measures, and frequencies in the alpha range. At 12 months, predictive features were more distributed between power and nonlinear measures, and biased toward frequencies in the beta range. However, diagnosis prediction accuracy substantially decreased in the larger, more behaviorally heterogeneous 12-month sample. CONCLUSIONS: These results demonstrate that speech processing EEG measures can facilitate earlier identification of ASD but emphasize the need for age-specific predictive models with large sample sizes to develop clinically relevant classification algorithms.K23 DC017983 - NIDCD NIH HHS; P50 HD105351 - NICHD NIH HHS; R01 DC010290 - NIDCD NIH HHS; R21 DC008637 - NIDCD NIH HHSPublished versio

    An enhanced stress indices in signal processing based on advanced mmatthew correlation coefficient (MCCA) and multimodal function using EEG signal

    Get PDF
    Stress is a response to various environmental, psychological, and social factors, resulting in strain and pressure on individuals. Categorizing stress levels is a common practise, often using low, medium, and high stress categories. However, the limitation of only three stress levels is a significant drawback of the existing approach. This study aims to address this limitation and proposes an improved method for EEG feature extraction and stress level categorization. The main contribution of this work lies in the enhanced stress level categorization, which expands from three to six levels using the newly established fractional scale based on the quantities' scale influenced by MCCA and multimodal equation performance. The concept of standard deviation (STD) helps in categorizing stress levels by dividing the scale of quantities, leading to an improvement in the process. The lack of performance in the Matthew Correlation Coefficient (MCC) equation is observed in relation to accuracy values. Also, multimodal is rarely discussed in terms of parameters. Therefore, the MCCA and multimodal function provide the advantage of significantly enhancing accuracy as a part of the study's contribution. This study introduces the concept of an Advanced Matthew Correlation Coefficient (MCCA) and applies the six-sigma framework to enhance accuracy in stress level categorization. The research focuses on expanding the stress levels from three to six, utilizing a new scale of fractional stress levels influenced by MCCA and multimodal equation performance. Furthermore, the study applies signal pre-processing techniques to filter and segregate the EEG signal into Delta, Theta, Alpha, and Beta frequency bands. Subsequently, feature extraction is conducted, resulting in twenty-one statistical and non-statistical features. These features are employed in both the MCCA and multimodal function analysis. The study employs the Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (k-NN) classifiers for stress level validation. After conducting experiments and performance evaluations, RF demonstrates the highest average accuracy of 85%–10% in 10-Fold and K-Fold techniques, outperforming SVM and k-NN. In conclusion, this study presents an improved approach to stress level categorization and EEG feature extraction. The proposed Advanced Matthew Correlation Coefficient (MCCA) and six-sigma framework contribute to achieving higher accuracy, surpassing the limitations of the existing three-level categorization. The results indicate the superiority of the Random Forest classifier over SVM and k-NN. This research has implications for various applications and fields, providing a more effective equation to accurately categorize stress levels with a potential accuracy exceeding 95%
    corecore