150 research outputs found

    High-order Newton-type iterative methods with memory for solving nonlinear equations

    Get PDF
    In this paper, we present a new family of two-step Newton-type iterative methods with memory for solving nonlinear equations. In order to obtain a Newton-type method with memory, we first present an optimal two-parameter fourth-order Newton-type method without memory. Then, based on the two-parameter method without memory, we present a new two-parameter Newton-type method with memory. Using two self-correcting parameters calculated by Hermite interpolatory polynomials, the RR-order of convergence of a new Newton-type method with memory is increased from 4 to 5.7016 without any additional calculations. Numerical comparisons are made with some known methods by using the basins of attraction and through numerical computations to demonstrate the efficiency and the performance of the presented methods

    A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems

    Full text link
    [EN] We used a Kurchatov-type accelerator to construct an iterative method with memory for solving nonlinear systems, with sixth-order convergence. It was developed from an initial scheme without memory, with order of convergence four. There exist few multidimensional schemes using more than one previous iterate in the very recent literature, mostly with low orders of convergence. The proposed scheme showed its efficiency and robustness in several numerical tests, where it was also compared with the existing procedures with high orders of convergence. These numerical tests included large nonlinear systems. In addition, we show that the proposed scheme has very stable qualitative behavior, by means of the analysis of an associated multidimensional, real rational function and also by means of a comparison of its basin of attraction with those of comparison methods.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Behl, R.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Bhalla, S. (2021). A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems. Mathematics. 9(17):1-16. https://doi.org/10.3390/math9172122S11691

    Potra-Pták Iterative Method with Memory

    Get PDF

    Dynamical analysis of an iterative method with memory on a family of third-degree polynomials

    Get PDF
    Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we accomplish a complete dynamical study of an iterative method with memory, the Kurchatov scheme, applied on a family of cubic polynomials. To reach this goal we transform the iterative scheme with memory into a discrete dynamical system defined on R2. We obtain a complete description of the dynamical planes for every value of parameter of the family considered. We also analyze the bifurcations that occur related with the number of fixed points. Finally, the dynamical results are summarized in a parameter line. As a conclusion, we obtain that this scheme is completely stable for cubic polynomials since the only attractors that appear for any value of the parameter, are the roots of the polynomial.This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers for their comments and suggestions

    On a Derivative-Free Variant of King’s Family with Memory

    Get PDF
    The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higher R-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme
    corecore