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Abstract. In this paper, we present a new family of two-step Newton-type iterative meth-
ods with memory for solving nonlinear equations. In order to obtain a Newton-type method
with memory, we first present an optimal two-parameter fourth-order Newton-type method
without memory. Then, based on the two-parameter method without memory, we present
a new two-parameter Newton-type method with memory. Using two self-correcting param-
eters calculated by Hermite interpolatory polynomials, the R-order of convergence of a new
Newton-type method with memory is increased from 4 to 5.7016 without any additional
calculations. Numerical comparisons are made with some known methods by using the
basins of attraction and through numerical computations to demonstrate the efficiency and
the performance of the presented methods.
AMS subject classifications: 65H05, 65B99
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1. Introduction

Finding the root of a nonlinear equation f(x) = 0 is a classical problem in scien-
tific computation. Recently, many iterative methods have been proposed for solving
nonlinear equations, see [1-14] and the references therein. In these methods, the it-
erative methods with memory are worth studying. The iterative method with mem-
ory can improve the order of convergence of the method without memory without
any additional calculations and it has a very high computational efficiency. There
are two kinds of iterative methods with memory, i.e. Steffensen-type method and
Newton-type method. In this paper, we only consider the Newton-type method
with memory. For example, in [9] Petković et al. proposed a two-step Newton-type
iterative method with memory of the R-order 4.562 by using inverse interpolation,
which is written as

N(xn) = xn − f(xn)

f ′(xn)
, φ(t) =

1

f(t)− f(xn)

[
t− xn

f(t)− f(xn)
− 1

f ′(xn)

]
,

yn = N(xn) + f(xn)
2φ(yn−1),

xn+1 = N(xn) + f(xn)
2φ(yn),

(1)
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where y−1 = N(x0). The basic idea of (1) comes from Neta who in [5] derived the
following three-step Newton-type method with memory of the R-order 10.815:

N(xn) =xn − f(xn)

f ′(xn)
, ψ(t) =

1

f(t)− f(xn)

[
t− xn

f(t)− f(xn)
− 1

f ′(xn)

]
,

yn =N(xn) + [f(yn−1)ψ(zn−1)− f(zn−1)ψ(yn−1)]
f(xn)

2

f(yn−1)− f(zn−1)
,

zn =N(xn) + [f(yn)ψ(zn−1)− f(zn−1)ψ(yn)]
f(xn)

2

f(yn)− f(zn−1)
,

xn+1 =N(xn) + [f(yn)ψ(zn)− f(zn)ψ(yn)]
f(xn)

2

f(yn)− f(zn)
,

(2)

where y−1 = N(x0) and z−1 = y−1 + |f(x0)| /10. The efficiency indices of methods
(1) and (2) are low. The reason is that iterative methods (1) and (2) require four and
six functional evaluations in their first iteration, respectively. In order to accelerate
the convergence or improve the computational efficiency of the Newton-type method
with memory, in [14] Wang and Zhang developed a two-step Newton-type method
with memory of R-order 5, which is given by

λn =− H ′′
4 (xn)

2f ′(xn)
,

yn =xn − f(xn)

λnf(xn) + f ′(xn)
,

xn+1 =yn − f(yn)

2λnf(xn) + f ′(xn)

(
f(xn) + (2 + β)f(yn)

f(xn) + βf(yn)

)
,

(3)

where β ∈ R,H ′′
4 (xn) = 2f [xn, xn, yn−1]+(4f [xn, xn, yn−1, xn−1]−2f [xn, yn−1, xn−1,

xn−1])(xn − yn−1) and H4(x) = H4(x;xn, xn, yn−1, xn−1, xn−1) is a Hermite in-
terpolatory polynomial of fourth degree. The efficiency index of method (3) is
51/3 ≈ 1.7100, which is higher than the efficiency indices of methods (1) and (2), see
[14].

The purpose of this paper is to improve further the R-order of convergence and
the efficiency index of the two-step Newton-type iterative method and give the con-
vergence analysis. This paper is organized as follows. In Section 2, we derive a
family of optimal fourth-order iterative methods without memory for solving non-
linear equations. Further accelerations of convergence speed are attained in Section
3. We obtain a new family of two-point Newton-type iterative methods with memory
by varying two free parameters in per full iteration. The two self-accelerating param-
eters are calculated using information available from the current and previous itera-
tions. The corresponding R-order of convergence is increased from 4 to 5.7016. The
maximal efficiency index of the new method with memory is (5.7016)1/3 ≈ 1.7865,
which is higher than the efficiency indices of the existing Newton-type methods.
Numerical examples are given in Section 4 to illustrate convergence behavior of our
methods for simple roots. In Section 5, some dynamical aspects associated to the
presented methods are studied. Section 6 gives a short conclusion.



Newton-type iterative methods with memory 93

2. The two-step Newton-type method without memory

In order to get a two-step Newton-type iterative method with memory based on the
well known Ostrowski’s method [7, 10], we consider the following two-step iterative
method without memory by using the weight function method.

yn =xn − f(xn)

f ′(xn)
G(sn),

xn+1 =yn − f(yn)

2f [xn, yn]− f ′(xn)
H(sn),

(4)

where G(sn) and H(sn) are two weight functions with sn = f(xn)/f
′(xn). The

functions G(sn) and H(sn) should be determined so that the iterative method (4) is
of order four. For the iterative method defined by (4) we have the following result.

Theorem 1. Let a ∈ I be a simple zero of a sufficiently differentiable function
f : I ⊂ R → R for an open interval I. Then the iterative method defined by (4) is
of fourth-order convergence when

G(0) = 1, G′(0) = γ, H(0) = 1, H ′(0) = 0, H ′′(0) = 2β and γ, β ∈ R, (5)

and it satisfies the error equation below

en+1 = (c2 − γ)(c22 − c3 − β − c2γ)e
4
n +O(e5n). (6)

Proof. Let en = xn − a, cn = (1/n!)f (n)(a)/f ′(a), n = 2, 3, . . .. Using the Taylor
expansion and taking into account f(a) = 0 we have

f(xn) =f
′(a)[en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n +O(e6n)], (7)

f ′(xn) =f
′(a)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)]. (8)

Dividing (7) by (8) we obtain

sn =
f(xn)

f ′(xn)
= en − c2e

2
n + (2c22 − 2c3)e

3
n + (−4c32 + 7c2c3 − 3c4)e

4
n +O(e5n). (9)

Using (5), (9) and Taylor expansion G(sn) = G(0) +G′(0)sn +O(s2n) we have

G(sn) =1 + γsn

=1 + γ(en − c2e
2
n + (2c22 − 2c3)e

3
n + (−4c32 + 7c2c3 − 3c4)e

4
n +O(e5n)). (10)

From (9) and (10) we get

en,y =yn − a = xn − a−G(sn)
f(xn)

f ′(xn)

=(c2 − γ)e2n + 2(−c22 + c3 + c2γ)e
3
n

+ (4c32 − 7c2c3 + 3c4 − 5c22γ + 4c3γ)e
4
n +O(e5n). (11)
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By an argument similar to that of (7), we have

f(yn) =f
′(a)[(c2 − γ)e2n − 2(c22 − c3 − c2γ)e

3
n

+ (5c32 − 7c22γ + 4c4γ + c2(−7c3 − γ2))e4n +O(e5n)]. (12)

From (7), (11) and (12) we obtain

f [xn, yn] =f
′(a)(1 + c2en + (c22 + c3 − c2γ)e

2
n

+(−2c32 + 3c2c3 + c4+2c22γ−c3γ)e3n+O(e4n)), (13)

f(yn)(2f [xn, yn]− f ′(xn))
−1 =(c2 − γ)e2n + 2(−c22 + c3 + c2γ)e

3
n

+ (3c32 − 3c22γ + 3(c4 + c3γ)

− c2(6c3 + γ2))e4n +O(e5n). (14)

Using (5), (9) and Taylor expansion H(sn) = H(0) +H ′(0)sn +H ′′(0)s2n/2+O(s3n)
we get

H(sn) = 1 + βe2n − 2βc2e
3
n + β(5c22 − 4c3)e

4
n +O(e5n). (15)

Hence, together with (11), (14) and (15), we obtain the error equation

en+1 =xn+1 − a = yn − a− f(yn)H(sn)(2f [xn, yn]− f ′(xn))
−1

=(c2 − γ)(c22 − c3 − β − γc2)e
4
n +O(e5n). (16)

The proof is completed.

It is obvious that the iterative method (4) requires two functions and one deriva-
tive per iteration, thus it is an optimal scheme. Let p1/n be the efficiency index (see
[7]), where p is the order of the method and n is the number of functional evalua-
tions per iteration required by the method. We see that the new method (4) without
memory has the efficiency index of 3

√
4 ≈ 1.587.

Remark 1. Based on Theorem 1, we obtain a new iterative method without memory
as follows: 

yn =xn − f(xn)

f ′(xn)
G(sn),

xn+1 =yn − f(yn)

2f [xn, yn]− f ′(xn)
H(sn),

(17)

where sn = f(xn)/f
′(xn). G(sn) and H(sn) in (17) are two weight functions satis-

fying condition (5). Functions G(sn) and H(sn) in (17) can take many forms. For
example, taking the functions G(sn) = (1 − γsn)

−1 and H(sn) = (1 − βs2n)
−1, we

can give the following fourth-order iterative method without memory:
yn =xn − f(xn)

f ′(xn)− γf(xn)
,

xn+1 =yn − f(yn)

2f [xn, yn]− f ′(xn)

f ′(xn)
2

f ′(xn)2 − βf(xn)2
,

(γ, β ∈ R). (18)
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Taking the functions G(sn) = (1 − γsn)
−1 and H(sn) = 1 + βs2n, we obtain the

following fourth-order iterative method without memory:
yn =xn − f(xn)

f ′(xn)− γf(xn)
,

xn+1 =yn − f(yn)

2f [xn, yn]− f ′(xn)

(
1 + β

(
f(xn)

f ′(xn)

)2
)
,

(γ, β ∈ R). (19)

Remark 2. It is noteworthy that the error equation (6) can be written as the fol-
lowing scheme

en+1 =(c2 − γ)(c22 − c3 − β − c2γ)e
4
n +O(e5n)

=(c2 − γ)[c2(c2 − γ)− (c3 + β)]e4n +O(e5n). (20)

We can improve the order of convergence of method (17) by taking parameters γ = c2
and β = −c3 in (20). Therefore, the new method with memory can be obtained by
method (17) without memory.

3. New Newton-type iterative methods with memory

In this section we will improve the convergence rate of method (17) by varying the
parameters γ and β in per full iteration. Taking γ = c2 and β = −c3 in (20), we
can improve the order of convergence of method (17). However, the exact values
of f ′(a), f ′′(a) and f ′′′(a) are not available in practice and such acceleration of
convergence cannot be realized. But we could approximate the parameter γ by γn
and approximate the parameter β by βn. Parameters γn and βn can be computed
by using information available from the current and previous iterations and satisfy

lim
n→∞

γn = c2 =
f ′′(a)

2f ′(a)
and lim

n→∞
βn = −c3 = −f

′′′(a)

6f ′(a)

such that the fourth-order asymptotic convergence constant is zero in (20). In this
paper, the self-accelerating parameter γn is equal to the parameter −λn of Newton-
type method (3). We consider the following four methods for βn:

Method 1:

γn =
H ′′

4 (xn)

2f ′(xn)
and βn = −H

′′′
4 (xn)

6f ′(xn)
, (21)

where

H ′′′
4 (xn) = 6f [xn, xn, yn−1, xn−1]+6f [xn, xn, yn−1, xn−1, xn−1](2xn−xn−1− yn−1).

Method 2:

γn =
H ′′

4 (xn)

2f ′(xn)
and βn = −H̄

′′′
3 (yn)

6f ′(xn)
, (22)

where H̄ ′′′
3 (yn) = 6f [yn, xn, xn, yn−1]. H̄3(x) = H̄3(x ; yn, xn, xn, yn−1) is a Hermite

interpolatory polynomial of third degree.
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Method 3:

γn =
H ′′

4 (xn)

2f ′(xn)
and βn = −H̄

′′′
4 (yn)

6f ′(xn)
, (23)

where

H̄ ′′′
4 (yn) = H̄ ′′′

3 (yn) + 6f [yn, xn, xn, yn−1, xn−1](3yn − yn−1 − 2xn).

H̄4(x) = H̄4(x; yn, xn, xn, yn−1, xn−1) is a Hermite interpolatory polynomial of fourth
degree.

Method 4:

γn =
H ′′

4 (xn)

2f ′(xn)
and βn = −H̄

′′′
5 (yn)

6f ′(xn)
, (24)

where

H̄ ′′′
5 (yn) =H̄

′′′
4 (yn) + 6f [yn, xn, xn, yn−1, xn−1, xn−1]

[(yn − yn−1)(yn − xn−1) + (yn − xn)
2 + 2(yn − xn)(2yn − yn−1 − xn−1)].

H̄5(x) = H̄5(x; yn, xn, xn, yn−1, xn−1, xn−1) is a Hermite interpolatory polynomial
of fifth degree.

Here f [xn, xn] = f ′(xn) and f [xn, t] = (f(t)− f(xn))/(t−xn) are two first-order
divided differences. The higher order divided differences are defined recursively. The
divided difference f [yn, xn, xn, t0, t1, . . . , tm−3] of order m (m ≥ 3) is defined as

f [yn, xn, xn, t0, t1, . . . , tm−3]=
f [xn, xn, t0, t1, . . . , tm−3]−f [yn, xn, xn, t0, t1, . . . tm−4]

tm−3 − yn
.

The divided difference f [t0, t1, . . . , tm−3] of order m(m ≥ 3) is defined as

f [t0, t1, . . . , tm−3] =
f [t1, t2, . . . , tm−3]− f [t0, t1, . . . tm−4]

tm−3 − t0
.

Remark 3. Now, we can obtain the following two-parameter Newton-type iterative
method with memory

yn =xn − f(xn)

f ′(xn)
G(sn),

xn+1 =yn − f(yn)

2f [xn, yn]− f ′(xn)
H(sn),

(25)

where sn = f(xn)/f
′(xn), G(sn) satisfies the condition G(0) = 1, G′(0) = γn and

H(sn) satisfies the condition H(0) = 1, H ′(0) = 0, H ′′(0) = 2βn. The parameters
γn and βn are calculated by using one of the formulas (21)-(24) and they depend on
the data available from the current and the previous iterations. In this paper, the
self-accelerating parameter γn is equal to the parameter −λn of Newton-type method
(3).
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Remark 4. Parameter (21) can be computed easily, because Hermite interpolation
polynomial H4(x) has been used in the parameter γn. Computation of self-correcting
parameters γn and βn is complicated in this paper. The main purpose of this study is
to choose available nodes as good as possible to obtain the maximal convergence order
of two-step Newton type methods with memory. Hence, some simple approximations
of self-accelerating parameters γn and βn are not considered in this paper.

The concept of the R-order of convergence [6] and the following assertion (see
[1]) will be applied to estimate the convergence order of the iterative method with
memory (25).

Theorem 2. If the errors of approximations ej = xj − a obtained in an iterative
root-finding method IM satisfy

ek+1 ∼
n∏

i=0

(ek−i)
mi , k ≥ k({ek}),

then the R-order of convergence of IM, denoted with OR(IM, a), satisfies the in-
equality OR(IM, a) ≥ s∗, where s∗ is the unique positive solution of the equation

sn+1 −
n∑

i=0

mis
n−i = 0.

Lemma 1. Let H̄m be the Hermite interpolating polynomial of the degree m that
interpolates a function f at interpolation nodes yn, xn, t0, . . . , tm−3 contained in an
interval I and the derivative f (m+1) is continuous in I and the Hermite interpolating
polynomial H̄m(x) satisfied the condition H̄m(yn) = f(yn), H̄m(xn) = f(xn), H̄ ′

m(xn)
= f ′(xn), H̄m(tj) = f(tj)(j = 0, . . . ,m − 3). Define the errors et,j = tj − a (j =
0, . . . ,m− 3) and assume that

1. all nodes yn, xn, t0, . . . , tm−3 are sufficiently close to the zero a;

2. the conditions en = xn−a = O(et,0 . . . et,m−3) and en,y = yn−a = O(e2net,0 . . .
et,m−3) hold.

Then

βn + c3 ∼ (−1)m−2cm+1

m−3∏
j=0

et,j . (26)

Proof. The error of the Hermite interpolation can be expressed as follows

f(x)− H̄m(x) =
f (m+1)(ξ)

(m+ 1)!
(x− yn)(x− xn)

2
m−3∏
j=0

(x− tj) (ξ ∈ I). (27)

Differentiating (27) at the point x = yn we obtain

f ′′′(yn)−H̄ ′′′
m(yn) = 6

f (m+1)(ξ)

(m+ 1)!


m−3∏
j=0

(yn − tj) + 2(yn − xn)

m−3∑
k=0


m−3∏
j = 0
j ̸= k

(yn − tj)
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+
(yn − xn)

2

2

m−3∑
k=0

m−3∑
i = 0
i ̸= k


m−3∏
j = 0
j ̸= k
j ̸= i

(yn − tj)




(ξ ∈ I), (28)

H̄ ′′′
m(yn) = f ′′′(yn)−6

f (m+1)(ξ)

(m+ 1)!


m−3∏
j=0

(yn − tj) + 2(yn − xn)

m−3∑
k=0


m−3∏
j = 0
j ̸= k

(yn − tj)



+
(yn − xn)

2

2

m−3∑
k=0

m−3∑
i = 0
i ̸= k


m−3∏
j = 0
j ̸= k
j ̸= i

(yn − tj)




(ξ ∈ I), (29)

Taylor’s series of derivatives of f at the point xn, yn ∈ I and ξ ∈ I about the zero a
of f give

f ′(xn) =f
′(a)(1 + 2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)), (30)

f ′(yn) =f
′(a)(1 + 2c2en,y + 3c3e

2
n,y + 4c4e

3
n,y +O(e4n,y)), (31)

f ′′(yn) =f
′(a)(2c2 + 6c3en,y + 12c4e

2
n,y +O(e3n,y)), (32)

f ′′′(yn) =f
′(a)(6c3 + 24c4en,y +O(e2n,y)), (33)

f (m+1)(ξ) =f ′(a)((m+ 1)!cm+1 + (m+ 2)!cm+2eξ +O(e2ξ)), (34)

where eξ = ξ − a. Substituting (33) and (34) into (29) we have

H̄ ′′′
m(yn) ∼ 6f ′(a)

c3 + 4c4en,y − cm+1


m−3∏
j=0

(yn − tj) + 2(yn − xn)

m−3∑
k=0


m−3∏
j = 0
j ̸= k

(yn − tj)

 +
(yn − xn)

2

2

m−3∑
k=0

m−3∑
i = 0
i ̸= k


m−3∏
j = 0
j ̸= k
j ̸= i

(yn − tj)






. (35)
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Dividing (35) by (30) we obtain

βn =− H̄ ′′′
m(yn)

6f ′(xn)
∼ −

c3 − cm+1


m−3∏
j=0

(yn − tj) + 2(yn − xn)

m−3∑
k=0


m−3∏
j = 0
j ̸= k

(yn − tj)

+
(yn − xn)

2

2

m−3∑
k=0

m−3∑
i = 0
i ̸= k


m−3∏
j = 0
j ̸= k
j ̸= i

(yn − tj)






, (36)

and

βn + c3 ∼ cm+1


m−3∏
j=0

(yn − tj) + 2(yn − xn)
m−3∑
k=0


m−3∏
j = 0
j ̸= k

(yn − tj)



+
(yn − xn)

2

2

m−3∑
k=0

m−3∑
i = 0
i ̸= k


m−3∏
j = 0
j ̸= k
j ̸= i

(yn − tj)




∼ (−1)m−2cm+1

m−3∏
j=0

et,j . (37)

The proof is completed.

Theorem 3. Let the varying parameters γn and βn in the iterative method (25) be
calculated by (21). If an initial approximation x0 is sufficiently close to a simple
root a of f(x), then the R-order of convergence of the iterative method (25) with
memory is at least 5.3059.

Proof. Let the sequence {xn} be generated by an iterative method (IM) converging
to the root a of f(x) with the R-order OR(IM, a) ≥ r, we write

en+1 ∼ Dn,re
r
n, en = xn − a, (38)

where Dn,r tends to the asymptotic error constant Dr of (IM) when n→ ∞. So,

en+1 ∼ Dn,r(Dn−1,re
r
n−1)

r = Dn,rD
r
n−1,re

r2

n−1. (39)

It is similar to the derivation of (39). We assume that the iterative sequence {yn}
has the R-order p; then

en,y ∼ Dn,pe
p
n ∼ Dn,p(Dn−1,re

r
n−1)

p = Dn,pD
p
n−1,re

rp
n−1. (40)
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Using (11), (20), γn and βn, we obtain the corresponding error relations for the
methods with memory (25)

en,y =yn − a ∼ (c2 − γn)e
2
n, (41)

en+1 =xn+1 − a ∼ (c2 − γn)[c2(c2 − γn)− (c3 + βn)]e
4
n. (42)

Here, we omitted higher order terms in (41)-(42).
Hermite interpolating polynomialH4(x) satisfied the conditionsH4(xn) = f(xn),

H ′
4(xn) = f ′(xn), H4(yn−1) = f(yn−1), H4(xn−1) = f(xn−1) and H ′

4(xn−1) =
f ′(xn−1). The error of the Hermite interpolation can be expressed as follows:

f(x)−H4(x) =
f (5)(ξ)

5!
(x− xn)

2(x− xn−1)
2(x− yn−1) (ξ ∈ I). (43)

Differentiating (43) at the point x = xn we obtain

f ′′(xn)−H ′′
4 (xn) =2

f (5)(ξ)

5!
(xn − xn−1)

2(xn − yn−1) (ξ ∈ I), (44)

H ′′
4 (xn) =f

′′(xn)− 2
f (5)(ξ)

5!
(xn − xn−1)

2(xn − yn−1) (ξ ∈ I), (45)

f ′′′(xn)−H ′′′
4 (xn) =6

f (5)(ξ)

5!
[2(xn−xn−1)(xn−yn−1)+(xn−xn−1)

2] (ξ ∈ I), (46)

H ′′′
4 (xn) =f

′′′(xn)− 6
f (5)(ξ)

5!
[2(xn − xn−1)(xn − yn−1)

+ (xn − xn−1)
2] (ξ ∈ I). (47)

Taylor’s series of derivatives of f at the point xn, ξ ∈ I about the zero a of f give

f ′′(xn) =f
′(a)(2c2 + 6c3en + 12c4e

2
n +O(e3n)), (48)

f ′′′(xn) =f
′(a)(6c3 + 24c4en +O(e2n)), (49)

f (5)(ξ) =f ′(a)(5!c5 + 6!c6eξ +O(e2ξ)), (50)

where eξ = ξ − a.
Substituting (48) and (50) into (45) we have

H ′′
4 (xn) ∼ 2f ′(a)(c2 + c5en−1,ye

2
n−1 + 3c3en). (51)

Substituting (49) and (50) into (47) we have

H ′′′
4 (xn) ∼6f ′(a)(c3 − c5(2en−1,yen−1 + e2n−1) + 4c4en). (52)

Dividing (51) by (30) we obtain

γn =
H ′′

4 (xn)

2f ′(xn)
∼
(
c2 + c5en−1,ye

2
n−1 + (3c3 − 2c22)en

)
, (53)

c2 − γn ∼− c5en−1,ye
2
n−1. (54)
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Dividing (52) by (30) we obtain

βn = −H
′′′
4 (xn)

6f ′(xn)
∼−

(
c3 − c5(2en−1,yen−1 + e2n−1) + (4c4 − c2c3)en

)
, (55)

c3 + βn ∼
(
c5(2en−1,yen−1 + e2n−1)− (4c4 − c2c3)en

)
∼ c5e

2
n−1. (56)

According to (41), (42), (54) and (56), we get

en,y ∼(c2 − γn)e
2
n ∼ −c5en−1,ye

2
n−1(Dn−1,re

r
n−1)

2

∼− c5Dn−1,pD
2
n−1,re

2r+p+2
n−1 , (57)

en+1 ∼c5en−1,ye
2
n−1[c2c5en−1,ye

2
n−1 + c5e

2
n−1]e

4
n

∼c25e4n−1Dn−1,pe
p
n−1(Dn−1,re

r
n−1)

4 ∼ c25Dn−1,pD
4
n−1,re

4r+p+4
n−1 . (58)

By comparing exponents of en−1 appearing in two pairs of relations ((40),(57)) and
((39),(58)), we get the following system of equations{

2r + p+ 2 = rp,
4r + p+ 4 = r2.

(59)

Positive solution of system (59) is given by r ≈ 5.3059 and p ≈ 2.9209. Therefore,
the R-order of the methods with memory (25), when γn is calculated by (21), is at
least 5.3059.

Using the results of Lemma 1 and Theorem 3, we get Theorem 4 as follows:

Theorem 4. Let the varying parameters γn and βn in the iterative method (25) be
calculated by (22), (23) and (24), respectively. If an initial approximation x0 is suf-
ficiently close to a simple root a of f(x), then the R-order of convergence of iterative
methods (25) with memory is at least 5.4356, 5.5708 and 5.7016, respectively.

Proof. Method 2, γn and βn are calculated by (22):
Using Lemma 1 for m = 3 and t0 = yn−1, we obtain

c3 + βn ∼ −c4en−1,y. (60)

According to (42), (54) and (60), we get

en+1 ∼c5e2n−1en−1,y[c2c5e
2
n−1en−1,y − c4en−1,y]e

4
n ∼ −c4c5e2n−1e

2
n−1,ye

4
n

∼− c4c5e
2
n−1D

2
n−1,pe

2p
n−1(Dn−1,re

r
n−1)

4 ∼ −c4c5D2
n−1,pD

4
n−1,re

4r+2p+2
n−1 . (61)

By comparing exponents of en−1 appearing in two pairs of relations ((40),(57)) and
((39),(61)), we get the following system of equations{

2r + p+ 2 = rp,
4r + 2p+ 2 = r2.

(62)

Positive solution of system (62) is given by r ≈ 5.4356 and p ≈ 2.9018. Therefore,
the R-order of the methods with memory (25), when γn is calculated by (22), is at
least 5.4356.
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Method 3, γn and βn are calculated by (23):
Using Lemma 1 for m = 4, t0 = yn−1 and t1 = xn−1 , we obtain

c3 + βn ∼ c5en−1,yen−1, (63)

According to (42), (54) and (63), we get

en+1 ∼c5e2n−1en−1,y[c2c5e
2
n−1en−1,y + c5en−1,yen−1]e

4
n ∼ c25e

3
n−1e

2
n−1,ye

4
n

∼c25e3n−1D
2
n−1,pe

2p
n−1(Dn−1,re

r
n−1)

4 ∼ c25D
2
n−1,pD

4
n−1,re

4r+2p+3
n−1 . (64)

By comparing exponents of en−1 appearing in two pairs of relations ((40), (57)) and
((39), (64)), we get the following system of equations{

2r + p+ 2 = rp,
4r + 2p+ 3 = r2.

(65)

Positive solution of system (65) is given by r ≈ 5.5708 and p ≈ 2.8751. Therefore,
the R-order of the methods with memory (25), when γn is calculated by (23), is at
least 5.5708.

Method 4, γn and βn are calculated by (24):
Hermite interpolating polynomial H̄5(x) satisfied the condition H̄5(yn) = f(yn),

H̄5(xn) = f(xn), H̄ ′
5(xn) = f ′(xn), H̄5(yn−1) = f(yn−1), H̄5(xn−1) = f(xn−1)

and H̄ ′
5(xn−1) = f ′(xn−1). The error of the Hermite interpolation can be expressed

as follows:

f(x)− H̄5(x) =
f (5)(ξ)

6!
(x− yn)(x− xn)

2(x− xn−1)
2(x− yn−1) (ξ ∈ I). (66)

Differentiating (66) at the point x = yn we obtain

f ′′′(yn)− H̄ ′′′
5 (yn) =6

f (5)(ξ)

6!
[(yn − yn−1)(yn − xn−1)

2 + 2(yn − xn)(yn − xn−1)
2

+4(yn − xn)(yn − xn−1)(yn − yn−1) + 2(yn − xn)
2(yn − xn−1)

+ (yn − xn)
2(yn − yn−1)] (ξ ∈ I), (67)

H̄ ′′′
5 (yn) =f

′′′(yn)− 6
f (5)(ξ)

6!
[(yn − yn−1)(yn − xn−1)

2

+2(yn − xn)(yn − xn−1)
2+4(yn − xn)(yn − xn−1)(yn − yn−1)

+ 2(yn − xn)
2(yn − xn−1)

+ (yn − xn)
2(yn − yn−1)] (ξ ∈ I). (68)

Taylor’s series of derivatives of f at the point ξ ∈ I about the zero a of f give

f (5)(ξ) = f ′(a)(6!c6 + 7!c7eξ +O(e2ξ)), (69)

where eξ = ξ − a.
Substituting (33) and (69) into (68) we have

H̄ ′′′
5 (yn) ∼ 6f ′(a)(c3 + c6en−1,ye

2
n−1). (70)
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Dividing (70) by (30) we obtain

βn = −H̄
′′′
5 (yn)

6f ′(xn)
∼− (c3 + c6en−1,ye

2
n−1), (71)

c3 + βn ∼− c6en−1,ye
2
n−1. (72)

According to (42), (54) and (72), we get

en+1 ∼c5en−1,ye
2
n−1[c2c5en−1,ye

2
n−1 − c6en−1,ye

2
n−1]e

4
n ∼ c5(c2c5 − c6)e

4
n−1e

2
n−1,ye

4
n

∼c5(c2c5 − c6)D
2
n−1,pD

4
n−1,re

4r+2p+4
n−1 . (73)

By comparing exponents of en−1 appearing in two pairs of relations ((40),(57)) and
((39),(73)), we get the following system of equations{

2r + p+ 2 = rp,
4r + 2p+ 4 = r2.

(74)

Positive solution of system (74) is given by r ≈ 5.7016 and p ≈ 2.8508. Therefore,
the R-order of the methods with memory (25), when γn is calculated by (24), is at
least 5.7016.

The proof is completed.

Remark 5. The efficiency index of iterative method (25) with the corresponding
expressions (21)-(24) of γn and βn is (5.3059)1/3 ≈ 1.7442, (5.4356)1/3 ≈ 1.7583,
(5.5708)1/3 ≈ 1.7727 and (5.7016)1/3 ≈ 1.7865, respectively. The efficiency indices
of our methods with memory are higher than the efficiency index (51/3 ≈ 1.7100) of
Newton-type method (3) with memory.

4. Numerical results

The new methods (18) and (19) with and without memory are used to solve nonlin-
ear functions fi(x)(i = 1, 2) and the computation results are compared with other
Newton-type iterative methods (1) and (3) with memory, see Tables 1-2. The ab-
solute errors|xk − a| in the first four iterations are given in Tables 1-2, where a is
the exact root computed with 1200 significant digits. The computational order of
convergence ρ is defined by [3]:

ρ ≈ ln(|xn+1 − xn| / |xn − xn−1|)
ln(|xn − xn−1| / |xn−1 − xn−2|)

. (75)

The following test functions are used:

f1(x) = xex
2

− sin2(x) + 3 cos(x) + 5, a ≈ −1.2076478271309189, x0 = −1.3,

f2(x) = arcsin(x2 − 1)− 0.5x+ 1, a ≈ 0.59481096839836918, x0 = 0.7.

The numerical results shown in Tables 1-2 are in concordance with the theory
developed in this paper. We can notice that the results obtained by our methods
with memory are better than the other two-step Newton-type methods with memory.
The highest order of convergence of our methods with memory is 5.7016, which is
higher than methods (1) and (3).
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Methods |x1 − a| |x2 − a| |x3 − a| |x4 − a| ρ
(18), γ = β = −1 0.23e-4 0.37e-19 0.23e-78 0.40e-315 4.00
(19), γ = β = −1 0.23e-4 0.36e-19 0.20e-78 0.22e-315 4.00

(1) 0.53e-5 0.12e-23 0.25e-108 0.18e-494 4.56
(3), λ0 = −0.01, β = −2 0.34e-4 0.66e-21 0.32e-105 0.90e-527 5.00
(18), (21), γ0 = β0 = −1 0.23e-4 0.85e-24 0.47e-127 0.62e-675 5.31
(18), (22), γ0 = β0 = −1 0.23e-4 0.45e-24 0.45e-132 0.89e-719 5.43
(18), (23), γ0 = β0 = −1 0.23e-4 0.34e-25 0.32e-141 0.13e-787 5.57
(18), (24), γ0 = β0 = −1 0.23e-4 0.11e-25 0.53e-148 0.24e-844 5.69
(19), (21), γ0 = β0 = −1 0.23e-4 0.82e-24 0.38e-127 0.20e-675 5.31
(19), (22), γ0 = β0 = −1 0.23e-4 0.43e-24 0.36e-132 0.28e-719 5.43
(19), (23), γ0 = β0 = −1 0.23e-4 0.32e-25 0.26e-141 0.41e-788 5.57
(19), (24), γ0 = β0 = −1 0.23e-4 0.10e-25 0.40e-148 0.47e-845 5.69

Table 1: Numerical results for f1(x) by the methods with and without memory

Methods |x1 − a| |x2 − a| |x3 − a| |x4 − a| ρ
(18), γ = β = −0.6 0.56e-4 0.48e-17 0.27e-69 0.28e-278 4.00
(19), γ = β = −0.6 0.56e-4 0.49e-17 0.30e-69 0.42e-278 4.00

(1) 0.37e-8 0.70e-41 0.13e-189 0.84e-868 4.56
(3), λ0 = −0.1, β = −1.75 0.40e-5 0.25e-27 0.96e-139 0.88e-696 5.00
(18), (21), γ0 = β0 = −0.6 0.56e-4 0.65e-24 0.33e-128 0.77e-683 5.32
(18), (22), γ0 = β0 = −0.6 0.56e-4 0.41e-24 0.16e-133 0.13e-727 5.43
(18), (23), γ0 = β0 = −0.6 0.56e-4 0.55e-25 0.28e-141 0.37e-789 5.57
(18), (24), γ0 = β0 = −0.6 0.56e-4 0.62e-26 0.15e-149 0.26e-855 5.71
(19), (21), γ0 = β0 = −0.6 0.56e-4 0.66e-24 0.38e-128 0.17e-682 5.32
(19), (22), γ0 = β0 = −0.6 0.56e-4 0.42e-24 0.19e-133 0.31e-727 5.43
(19), (23), γ0 = β0 = −0.6 0.56e-4 0.57e-25 0.33e-141 0.92e-789 5.57
(19), (24), γ0 = β0 = −0.6 0.56e-4 0.64e-26 0.19e-149 0.85e-855 5.71

Table 2: Numerical results for f2(x) by the methods with and without memory

5. Dynamical analysis

Dynamical properties of the rational function give us important information about
numerical features of the iterative method as its stability and reliability. In what
follows, we compare our methods with and without memory to methods with memory
(1) and (3) by using the basins of attraction for three complex polynomials f(z) =
zk − 1, k = 2, 3, 4. We use a similar like technique as in [15] to generate the basins of
attraction. To generate the basins of attraction for the zeros of a polynomial and an
iterative method we take a grid of 400× 400 points in a rectangle D = [−3.0, 3.0]×
[−3.0, 3.0] ⊂ C and we use these points as z0. If the sequence generated by the
iterative method reaches a zero z∗ of the polynomial with a tolerance |zk − z∗| <
10−15 and a maximum of 25 iterations, we decide that z0 is in the basin of attraction
of the zero and we paint this point blue for this root. In the same basin of attraction,
the number of iterations needed to achieve the solution is shown in darker or
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Figure 1: Top row: Methods without memory (18)(left) and (19)(right). Middle row: Methods

(1)(left) and (3)(right). Bottom row: Methods (18) with (24)(left) and (19) with (24)(right). The

results are for the polynomial z2 − 1.
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Figure 2: Top row: Methods without memory (18)(left) and (19)(right). Middle row: Methods

(1)(left) and (3)(right). Bottom row: Methods (18) with (24)(left) and (19) with (24)(right).The

results are for the polynomial z3 − 1.
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Figure 3: Top row: Methods without memory (18)(left) and (19)(right). Middle row: Methods

(1)(left) and (3)(right). Bottom row: Methods (18) with (24)(left) and (19) with (24)(right). The

results are for the polynomial z4 − 1.
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brighter colors (the less iterations, the brighter color). Black color denotes lack of
convergence to any of the roots (with the maximum of iterations established) or
convergence to the infinity. The fractals of our methods with memory are almost
similar, we only give the basins of attraction of our methods with memory of the R-
order 5.7016. The parameters used in iterative methods (18)–(19) without memory
are γ = 0.01 and β = −0.01. The parameters λ0 = 0.01 and β = −0.01 are used in
method (3) with memory. Our methods with memory use the parameters γ0 = 0.01
and β0 = −0.01 in the first iteration.

Figures 1-3 show that the new methods with memory have very little diverging
points compared to other methods. Figures 2-3 show that the basins of attraction for
our methods with memory are larger than the other methods and the convergence
speed of our methods with memory are faster than our methods (18)–(19) without
memory. On the whole, we can see that the new methods with memory are better
than the other methods in this paper.

6. Conclusions

In this paper, we have proposed a new family of two-step Newton-type iterative
methods with and without memory for solving nonlinear equations. Using two self-
correcting parameters calculated by Hermite interpolatory polynomials the R-order
of convergence of the new Newton-type method with memory is increased from
4 to 5.7016 without any additional calculations. The main contribution of this
paper is that we obtain the maximal order of Newton-type methods without any
additional function evaluations. The new methods are compared in performance
and computational efficiency with some existing methods by numerical examples.
We observed that the computational efficiency indices of the new methods with
memory are better than those of other existing two-step methods.
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