626 research outputs found

    Hybrid organic-inorganic structured materials as single-site heterogeneous catalysts

    Full text link
    Catalyst selectivity is associated with well-defined homogeneous active sites. Transition metal complexes and organocatalysts are highly active and selective in the homogeneous phase, and their heterogenization by incorporating them into inorganic solid materials allows combining their excellent catalytic activity with improved separation, recovering and recycling properties. In this article, we present the structural characteristics and catalytic properties of hybrid organic inorganic materials in which the molecular catalysts are part of the inorganic structure, emphasizing the possibilities of periodic mesoporous hybrid materials and coordination polymers as single-site solid catalysts.We thank Spanish MICINN (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2011-29020-C02-01) and Generalitat Valenciana (PROMETEO project 2088/130) for financial support.Díaz Morales, UM.; Boronat Zaragoza, M.; Corma Canós, A. (2012). Hybrid organic-inorganic structured materials as single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468(2143):1927-1954. https://doi.org/10.1098/rspa.2012.0066S19271954468214

    Metal Ion Detection by Luminescent Metal Organic Frameworks

    Get PDF
    abstract: Metal Organic Frameworks(MOFs) have been used in various applications, including sensors. The unique crystalline structure of MOFs in addition to controllability of their pore size and their intake selectivity makes them a promising method of detection. Detection of metal ions in water using a binary mixture of luminescent MOFs has been reported. 3 MOFs(ZrPDA, UiO-66 and UiO-66-NH2) as detectors and 4 metal ions(Pb2+, Ni2+, Ba2+ and Cu2+) as the target species were chosen based on cost, water stability, application and end goals. It is possible to detect metal ions such as Pb2+ at concentrations at low as 0.005 molar using MOFs. Also, based on the luminescence responses, a method of distinguishing between similar metal ions has been proposed. It is shown that using a mixture of MOFs with dierent reaction to metal ions can lead to unique and specic 3D luminescence maps, which can be used to identify the present metal ions in water and their amount. In addition to the response of a single MOF to addition of a single metal ion, luminescence response of ZrPDA + UiO-66 mixture to increasing concentration of each of 4 metal ions was studied, and summarized. A new peak is observed in the mixture, that did not exist before, and it is proposed that this peak requires metal ions to activateDissertation/ThesisMasters Thesis Materials Science and Engineering 201

    Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains

    Full text link
    [EN] Novel aluminium MOF-type materials structured by 1D subdomains, such as organic-inorganic nanoribbons, were synthesized by modifying the conditions of solvothermal synthesis and the nature of the solvents in the presence of aryl monocarboxylate linkers with long alkyl chains, which acted as growth-modulating agents. Specifically, three different families of materials were prepared with various morphological characteristics: (i) isoreticular MIL-53(Al)-type materials, (ii) mesoscopic metalorganic structures and (iii) lamellar aluminium MOFs. The length of the alkyl chain in the aryl linker and the hydrophobic/hydrophilic nature of the solvothermal synthesis media determined the structuration level that was achieved. The derived Al-MOFs are active and stable catalysts for the synthesis of fine chemicals. This was illustrated by the efficient synthesis of 2,3-dihydro-2,2,4-trimethyl-1H-1,5-benzodiazepine.The authors are grateful for financial support from the Spanish Government under MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. thanks predoctoral fellowships from MINECO for economic support. The European Union is also acknowledged for ERC-AdG-2014-671093-SynCatMatchMoreno, JM.; Velty, A.; Vidal Moya, JA.; Díaz Morales, UM.; Corma Canós, A. (2018). Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains. Dalton Transactions. 47(15):5492-5502. https://doi.org/10.1039/C8DT00394GS549255024715Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810rGetman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217cSuh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274sLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cChughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kStavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and opto-electronic devices. Chem. Soc. Rev., 43(16), 5994-6010. doi:10.1039/c4cs00096jDíaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304aDing, S.-Y., & Wang, W. (2013). Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42(2), 548-568. doi:10.1039/c2cs35072fCorma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526. doi:10.1021/ja0276974Alberti, G., Costantino, U., Allulli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical). Journal of Inorganic and Nuclear Chemistry, 40(6), 1113-1117. doi:10.1016/0022-1902(78)80520-xCorma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119Opanasenko, M., Shamzhy, M., Yu, F., Zhou, W., Morris, R. E., & Čejka, J. (2016). Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 7(6), 3589-3601. doi:10.1039/c5sc04602eBellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417hBellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024Gomez, G. E., Bernini, M. C., Brusau, E. V., Narda, G. E., Vega, D., Kaczmarek, A. M., … Nazzarro, M. (2015). Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. Dalton Transactions, 44(7), 3417-3429. doi:10.1039/c4dt02844aAmo-Ochoa, P., Welte, L., González-Prieto, R., Sanz Miguel, P. J., Gómez-García, C. J., Mateo-Martí, E., … Zamora, F. (2010). Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 46(19), 3262. doi:10.1039/b919647aRodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113Cai, G., & Jiang, H.-L. (2016). A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. Angewandte Chemie International Edition, 56(2), 563-567. doi:10.1002/anie.201610914Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990dSenkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609aGarcía-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835Moreno, J. M., Navarro, I., Díaz, U., Primo, J., & Corma, A. (2016). Single-Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie International Edition, 55(37), 11026-11030. doi:10.1002/anie.201602215Ben-Cherif, W., Gharbi, R., Sebai, H., Dridi, D., Boughattas, N. A., & Ben-Attia, M. (2010). Neuropharmacological screening of two 1,5-benzodiazepine compounds in mice. Comptes Rendus Biologies, 333(3), 214-219. doi:10.1016/j.crvi.2009.09.015Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., … Kim, S. Y. (2010). Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorganic & Medicinal Chemistry Letters, 20(13), 3969-3971. doi:10.1016/j.bmcl.2010.04.133Wang, L.-Z., Li, X.-Q., & An, Y.-S. (2015). 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure–activity relationships. Organic & Biomolecular Chemistry, 13(19), 5497-5509. doi:10.1039/c5ob00655dHuang, Y., Khoury, K., Chanas, T., & Dömling, A. (2012). Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Organic Letters, 14(23), 5916-5919. doi:10.1021/ol302837hDelpuech, J. J., Khaddar, M. R., Peguy, A. A., & Rubini, P. R. (1975). Octahedral and tetrahedral solvates of the aluminum cation. Study of the exchange of free and bound organophosphorus ligands by nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 97(12), 3373-3379. doi:10.1021/ja00845a016Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kGarcía-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265bDai-Il, J., Tae-wonchoi, C., Yun-Young, K., In-Shik, K., You-Mi, P., Yong-Gyun, L., & Doo-Hee, J. (1999). Synthesis Of 1,5-Benzodiazepine Derivatives. Synthetic Communications, 29(11), 1941-1951. doi:10.1080/00397919908086183Pozarentzi, M., Stephanidou-Stephanatou, J., & Tsoleridis, C. A. (2002). An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Letters, 43(9), 1755-1758. doi:10.1016/s0040-4039(02)00115-6Varala, R., Enugala, R., & Adapa, S. R. (2007). p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. Journal of the Brazilian Chemical Society, 18(2). doi:10.1590/s0103-50532007000200008Reddy, B. M., & Sreekanth, P. M. (2003). An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Letters, 44(24), 4447-4449. doi:10.1016/s0040-4039(03)01034-7Tajbakhsh, M., Heravi, M. M., Mohajerani, B., & Ahmadi, A. N. (2006). Solid acid catalytic synthesis of 1,5-benzodiazepines: A highly improved protocol. Journal of Molecular Catalysis A: Chemical, 247(1-2), 213-215. doi:10.1016/j.molcata.2005.11.033Majid, S. A., Khanday, W. A., & Tomar, R. (2012). Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst. Journal of Biomedicine and Biotechnology, 2012, 1-6. doi:10.1155/2012/510650Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492Afzal Pasha, M., & Puttaramegowda Jayashankara, V. (2006). Synthesis of 1,5-Benzodiazepine Derivatives Catalysed by Zinc Chloride. HETEROCYCLES, 68(5), 1017. doi:10.3987/com-05-10647Balakrishna, M. ., & Kaboudin, B. (2001). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Letters, 42(6), 1127-1129. doi:10.1016/s0040-4039(00)02168-7Adharvana Chari, M., & Syamasundar, K. (2005). Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catalysis Communications, 6(1), 67-70. doi:10.1016/j.catcom.2004.10.009Timofeeva, M. N., Prikhod’ko, S. A., Makarova, K. N., Malyshev, M. E., Panchenko, V. N., Ayupov, A. B., & Jhung, S. H. (2017). Iron-containing materials as catalysts for the synthesis of 1,5-benzodiazepine from 1,2-phenylenediamine and acetone. Reaction Kinetics, Mechanisms and Catalysis, 121(2), 689-699. doi:10.1007/s11144-017-1190-2Fazaeli, R., & Aliyan, H. (2007). Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions. Applied Catalysis A: General, 331, 78-83. doi:10.1016/j.apcata.2007.07.030Huang, G., Yang, Q., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2016). Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie International Edition, 55(26), 7379-7383. doi:10.1002/anie.201600497Jeganathan, M., & Pitchumani, K. (2014). Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chemistry & Engineering, 2(5), 1169-1176. doi:10.1021/sc400560

    Vinylene-Linked Covalent Organic Frameworks by Base-Catalyzed Aldol Condensation

    Get PDF
    Two 2D covalent organic frameworks (COFs) linked by vinylene (−CH=CH−) groups (V‐COF‐1 and V‐COF‐2) are synthesized by exploiting the electron deficient nature of the aromatic s‐triazine unit of C3‐symmetric 2,4,6‐trimethyl‐s‐triazine (TMT). The acidic terminal methyl hydrogens of TMT can easily be abstracted by a base, resulting in a stabilized carbanion, which further undergoes aldol condensation with multitopic aryl aldehydes to be reticulated into extended crystalline frameworks (V‐COFs). Both V‐COF‐1 (with terepthalaldehyde (TA)) and V‐COF‐2 (with 1,3,5‐tris(p‐formylphenyl)benzene (TFPB)) are polycrystalline and exhibit permanent porosity and BET surface areas of 1341 m2 g−1 and 627 m2 g−1, respectively. Owing to the close proximity (3.52 Å) of the pre‐organized vinylene linkages within adjacent 2D layers stacked in eclipsed fashion, [2+2] photo‐cycloadditon in V‐COF‐1 formed covalent crosslinks between the COF layers.TU Berlin, Open-Access-Mittel - 2019DFG, 390540038, EXC 2008: UniSysCa

    Reticular Chemistry in All Dimensions.

    Get PDF
    corecore