4,748 research outputs found

    Fatigue of Steel Plates with Inclusions

    Get PDF
    Manufactured by the end of the 80s in the last century steel structures were made of steel which contain signi cant amounts of non-metallic inclusions. As a result of many years of intensive use of the structures made of steel, structural discontinuity material combine to form internal cracks called lamellar cracks. These cracks are formed in rolled sheets with non-metallic inclusions. Studies of lamellar cracks began in the 1960s, but there is still no satisfactory theory explaining their formation

    Modeling Lamellar Cracks.

    Get PDF
    In this work, studies of models simulating lamellar cracks were conducted. These cracks are formed in rolled sheets with non-metallic inclusions. Studies of lamellar cracks began in the 1960s, but there is still no satisfactory theory explaining their formation. In this work, the application of modeling of samples with non-metallic inclusions for the study of lamellar cracking has been presented. Studies were conducted using two research methods: the photoelastic method and the finite element method. The possibility of crack formation was analyzed in models generated from images obtained from metallographic specimens

    Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Get PDF
    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%), phosphorus (from 0.006 to 0.008%) and oxygen (6 ppm). The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working

    Studying microstructure of heat resistant steel deoxidized by barium ferrosilicon

    Get PDF
    The paper examined the nature and distribution of non-metallic inclusions in the heat-resistant steel 12H1MF (0,12 % С, 1 % Сr, 0,5 - 0,6 Mo, 0,5 % V), ferrosilicobarim. As a reference, used by steel, deoxidized silicon. Melting was carried out in a laboratory, research-metallic inclusions, their shape and distribution, pollution index were studied according to conventional methods. Studies have shown that ferrosilicobarim deoxidation in an amount of 0,1 - 0,2 %, reduce the overall pollution index of non-metallic inclusions and change the nature of their distribution

    Boundaries for increasing the fatigue limit of the bearing steel SAE 52100 by thermomechanical treatments

    Get PDF
    AbstractHigh end applications often require high strength materials especially regarding the fatigue limit. It is still an open question what the highest fatigue limits are and how to increase them further in high strength steels. A thermomechanical treatment (TMT) in the temperature range of maximal dynamic strain ageing is an auspicious way to increase the fatigue limit of bearing steel SAE52100. Successful attempts have been published for various materials states. The present investigation deals with the influence of non-metallic inclusions on the fatigue limit and the possibility to increase the fatigue limit by TMT. The fatigue limit of high strength steels increases by reducing the size of the non-metallic inclusions during steelmaking. We found that TMT increases the fatigue limit of a high strength materials state only in cases in which the non-metallic inclusions are the starting points of the fatigue cracks. In the case of high cleanliness of the steel the origin of the fatigue cracks may be at any position in the matrix. If there are no critical non-metallic inclusions a TMT did not increase the fatigue limit further. The reasons for this behaviour will be explained and the border of the fatigue limit of high strength steels will be discussed

    Study of the Formation of Lamellar Cracks.

    Get PDF
    In rolled sheets, non-metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the numerical method for study of lamellar cracking. Numerical models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks - the joining of voids in the direction parallel to the exterior surface of the sheet (so-called "terraces" are formed) and at angles (so-called "jogs" are formed). The results of experimental tests were compared with the results of numerical calculations using the finite element method

    Propagation of the Lamellar Cracks.

    Get PDF
    The aim of the study is to include studying the effects of the interaction of lamellar cracks and their effect on the degradation of the structure. Lamellar cracking phenomenon is most common in the construction of welded ship hulls, bridges, pressure vessels and piping. The structures of these, as a result of errors in production and welding cracks. The sudden breakage occurs in the construction of real time, although they have been designed properly in terms of both the volume of the stress and strain. The growth of these cracks, at a rate equal to the speed of sound in the material, it is a sudden breakage

    Element Birth and Death Method Application to Lamellar Crack Analysis.

    Get PDF
    Load structure, the maximum permissible load is usually determined by the strength calculation (bearing data. Yield stress or strength of the material), or the parameters of fracture mechanics. The paper analyzes the calculations lamellar cracks formed in the lower crane girders steel belts. These cracks are formed in rolled sheets of non–metallic inclusions. The determination of the cracks in the existing designs are extremely difficult. It requires testing metallographic, ultrasonic or acoustic methods. Based on typical images of metallographic steel plates specified place of occurrence of cracks lamellar and sampling, and has subsequently been adopted for the calculation of numerical models of material structure and distribution of artificial joints. In order to analyze the propagation of cracks and formation of lamellar phase slots and destruction was carried out modeling studies and numerical methods cracking process

    Application of Photoelasticy for Study of Lamellar Cracks.

    Get PDF
    In rolled sheets, non–metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the photoelastic method for study of lamellar cracking. Photoelastic models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. The studied samples were placed in a polariscope and subjected to uniform tension; isochromatic images were obtained. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks – the joining of voids in the direction parallel to the exterior surface of the sheet (so–called ”terraces” are formed) and at angles (so–called ”jogs” are formed). The results of photoelastic tests were compared with the results of numerical calculations using the finite element method
    corecore