10,369 research outputs found

    Transient thermography for detection of micro-defects in multilayer thin films

    Get PDF
    Delamination and cracks within the multilayer structure are typical failure modes observed in microelectronic and micro electro mechanical system (MEMS) devices and packages. As destructive detection methods consume large numbers of devices during reliability tests, non-destructive techniques (NDT) are critical for measuring the size and position of internal defects throughout such tests. There are several established NDT methods; however, some of them have significant disadvantages for detecting defects within multilayer structures such as those found in MEMS devices. This thesis presents research into the application of transient infrared thermography as a non-destructive method for detecting and measuring internal defects, such as delamination and cracks, in the multilayer structure of MEMS devices. This technique works through the use of an infrared imaging system to map the changing temperature distribution over the surface of a target object following a sudden change in the boundary conditions, such as the application of a heat source to an external surface. It has previously been utilised in various applications, such as damage assessment in aerospace composites and verification of printed circuit board solder joint manufacture, but little research of its applicability to MEMS structures has previously been reported. In this work, the thermal behaviour of a multilayer structure containing defects was first numerically analysed. A multilayer structure was then successfully modelled using COMSOL finite element analysis (FEA) software with pulse heating on the bottom surface and observing the resulting time varying temperature distribution on the top. The optimum detecting conditions such as the pulse heating energy, pulse duration and heating method were determined and applied in the simulation. The influences of thermal properties of materials, physical dimensions of film, substrate and defect and other factors that will influence the surface temperature gradients were analytically evaluated. Furthermore, a functional relationship between the defect size and the resulting surface temperature was obtained to improve the accuracy of estimating the physical dimensions and location of the internal defect in detection. Corresponding experiments on specimens containing artificially created defects in macro-scale revealed the ability of the thermographic method to detect the internal defect. The precision of the established model was confirmed by contrasting the experimental results and numerical simulations

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Miniaturized Silicon Photodetectors

    Get PDF
    Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications

    III-V Quantum Structured Infrared Photodetectors Directly Grown on Silicon

    Get PDF
    Direct growth of III-V infrared photodetectors on silicon substrates is a promising so- lution for realising low-cost and large-format infrared focal plane arrays. However, this heteroepitaxial growth technique will generate various defects due to the dissimilarities between III-V materials and Si. These defects can severely damage the performance of a detector. In this thesis, different III-V quantum structured infrared photodetectors directly grown on Si are investigated to understand how different structures react to the defects. The experimental chapters begin with reporting an InGaAs/GaAs quantum dot infrared pho- todetector (QDIP) on Si. By utilising a Si substrate with a high degree of offcut along with dislocation filter layers, antiphase domains have been eliminated and the threading dislocation density has been reduced by ∌4 orders of magnitude. The QDIP shows a dual-band photoresponse at 80 K. To reduce the noise, a sub-monolayer QD quantum cascade photodetector on Si was designed. This structure has led to a distinct reduction of dark current and noise, achieving a high operating temperature of 160 K. To further boost the quantum efficiency of infrared photodetectors on Si, InAs/GaSb type-II superlattice (T2SL) photodetectors were also studied in this thesis. Generally, T2SL photodiode structures are more sensitive to material defects than QDs. Moreover, the surface leakage current contributes to a high level of dark current. InAs/GaSb T2SL photodiodes and barrier detectors have been grown on GaAs and Si substrates. Transmission electron microscopy and X-ray diffraction results confirm that the strain energy has been released at the heteroepitaxy interface and the threading dislocation density has been reduced by ∌3 orders of magnitude. The bulk dark current has been reduced by implementing an nBp barrier design. As a result, a T2SL nBp detector on GaAs with surface passivation has been shown to be capable of operating at 190 K without external bias. The work described in this thesis shows that there is great potential to improve the detector performance by using novel detector designs. Future work should focus on structure optimisation, as well as material quality im- provements, in order to achieve both low dark current and high quantum efficiency. High- operating temperature detectors on Si can be attempted to further explore the potential of III-V quantum structured infrared photodetectors. Specific recommendations are made for candidate structures. In order to be compatible with the mainstream Si micro-electronics industry, fabrication on (001) Si substrates will be required. Research towards this objec- tive is therefore also proposed

    Thermography of semiconductor lasers

    Get PDF
    Halbleiterlaser stellen mit ĂŒber 70% Wirkungsgrad einzigartig effiziente Lichtquellen dar. Dennoch ist ihre zuverlĂ€ssige Nutzung, insbesondere im Bereich hoher Leistungsdichten, von thermischen Limitierungen geprĂ€gt. Einen grundlegenden Beitrag zu deren physikalischen VerstĂ€ndnis leistet die Analyse der thermischen Eigenschaften und Degradationsprozesse solcher Bauelemente. In dieser Arbeit wird hierzu die Thermographie als innovative Analysemethode untersucht. Das Plancksche Strahlungsgesetz erlaubt die radiometrische Ermittlung der Temperatur. Die wichtige physikalische KenngrĂ¶ĂŸe EmissivitĂ€t wird in dieser Arbeit fĂŒr Halbleiter und Halbleiterlaserstrukturen spektral gemessen und auf fundamentale physikalische Eigenschaften zurĂŒckgefĂŒhrt. Auf dieser Grundlage werden methodische Aspekte der Thermographie diskutiert, welche durch den thermischen Hintergrund und die teilweise Transparenz der Halbleitermaterialien geprĂ€gt sind. Die daraus folgenden analytischen FĂ€higkeiten erlauben unter anderem die orts- und zeitaufgelöste Bestimmung der thermischen Eigenschaften von komplexen Hochleistungslasern unterschiedlichster Bauart. DarĂŒber hinaus ermöglicht die Kenntnis der beteiligten thermischen Zeitkonstanten die Extraktion von lokalen Überhöhungen in der Infrarotemission, deren Zusammenhang zur Degradation der Bauelemente untersucht wird. Eine grundsĂ€tzliche Begrenzung der Ausgangsleistung ist durch einen abrupten Degradationsprozess gegeben, welcher maßgeblich durch eine Reabsorption der Laserstrahlung an der Frontfacette verursacht wird. Mithilfe einer kombinierten Thermographie-Nahfeld-Messung wird dieser Prozess orts- und zeitaufgelöst analysiert. Die Erweiterung des Messfensters zu kĂŒrzeren WellenlĂ€ngen hin erlaubt die Detektion strahlender ÜbergĂ€nge unter Einbeziehung von Defektzentren welche als strahlende Signaturen von graduellen Degradationsprozessen aufzufassen sind.Semiconductor lasers are unequaled efficient light sources, reaching efficiencies of more than 70%. Nevertheless, thermal limits govern their reliable application, in particular in the field of high power densities. The analysis of thermal properties and degradation processes in such devices contributes essentially to the understanding of these limits. This work exploits thermography as an innovative analytical technique for such purpose. Planck''s law allows for a radiometric detection of temperatures. In this work, the important physical parameter emissivity is measured spectrally resolved for both semiconductors and semiconductor laser structures and is related to fundamental physical properties. Based on that, methodological aspects are discussed, which are affected on the one hand by the omnipresent thermal radiation and on the other hand by the partial transparency of the semiconductor materials. The resulting analytical capacities allow, for instance, for the determination of the thermal properties of complex high-power lasers of a wide range of different designs in a spatio-temporally resolved fashion. Furthermore, does the knowledge of the involved thermal time constants allow for an extraction of localized peaks of the infrared emission that is analyzed for its relationship with device degradation. The output power of high-power devices is fundamentally limited by the catastrophic optical damage, an abrupt degradation process that is induced significantly by reabsorption of laser radiation at the front facet. This process is analyzed spatio-temporally resolved with help of a combined thermography and optical near-field technique. Extending the detection range down to shorter wavelengths allows for imaging of radiative transitions that are related to defect centers, which are interpreted as radiative signatures of gradual device degradation processes

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Semiconductor Infrared Devices and Applications

    Get PDF
    Infrared (IR) technologies—from Herschel’s initial experiment in the 1800s to thermal detector development in the 1900s, followed by defense-focused developments using HgCdTe—have now incorporated a myriad of novel materials for a wide variety of applications in numerous high-impact fields. These include astronomy applications; composition identifications; toxic gas and explosive detection; medical diagnostics; and industrial, commercial, imaging, and security applications. Various types of semiconductor-based (including quantum well, dot, ring, wire, dot in well, hetero and/or homo junction, Type II super lattice, and Schottky) IR (photon) detectors, based on various materials (type IV, III-V, and II-VI), have been developed to satisfy these needs. Currently, room temperature detectors operating over a wide wavelength range from near IR to terahertz are available in various forms, including focal plane array cameras. Recent advances include performance enhancements by using surface Plasmon and ultrafast, high-sensitivity 2D materials for infrared sensing. Specialized detectors with features such as multiband, selectable wavelength, polarization sensitive, high operating temperature, and high performance (including but not limited to very low dark currents) are also being developed. This Special Issue highlights advances in these various types of infrared detectors based on various material systems
    • 

    corecore