291 research outputs found

    Meta-Kernelization with Structural Parameters

    Full text link
    Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS'09) and of Fomin et al. (FOCS'10), apply to optimization problems parameterized by solution size. We present the first meta-kernelization theorems that use a structural parameters of the input and not the solution size. Let C be a graph class. We define the C-cover number of a graph to be a the smallest number of modules the vertex set can be partitioned into, such that each module induces a subgraph that belongs to the class C. We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the C-cover number for any fixed class C of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean width). Many graph problems such as Independent Dominating Set, c-Coloring, and c-Domatic Number are covered by this meta-kernelization result. Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices

    Meta-Kernelization using Well-Structured Modulators

    Get PDF
    Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    Kernelization Lower Bounds By Cross-Composition

    Full text link
    We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L AND/OR-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical AND or OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by Dell and van Melkebeek (STOC 2010), we show that if an NP-hard problem OR-cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless NP \subseteq coNP/poly and the polynomial hierarchy collapses. Similarly, an AND-cross-composition for Q rules out polynomial kernels for Q under Bodlaender et al.'s AND-distillation conjecture. Our technique generalizes and strengthens the recent techniques of using composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. After learning of our results, several teams of authors have successfully applied the cross-composition framework to different parameterized problems. For completeness, our presentation of the framework includes several extensions based on this follow-up work. For example, we show how a relaxed version of OR-cross-compositions may be used to give lower bounds on the degree of the polynomial in the kernel size.Comment: A preliminary version appeared in the proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) under the title "Cross-Composition: A New Technique for Kernelization Lower Bounds". Several results have been strengthened compared to the preliminary version (http://arxiv.org/abs/1011.4224). 29 pages, 2 figure

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Cross-Composition: A New Technique for Kernelization Lower Bounds

    Get PDF
    We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we show that if an NP-complete problem cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses. Our technique generalizes and strengthens the recent techniques of using OR-composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. We have similar lower bounds for Feedback Vertex Set.Comment: Updated information based on final version submitted to STACS 201

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page
    corecore