163 research outputs found

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    A Comprehensive Taxonomy and Analysis of IEEE 802.15.4 Attacks

    Get PDF

    Analysis of Denial-of-Service attacks on Wireless Sensor Networks using simulation

    Get PDF
    Evaluation of Wireless Sensor Networks (WSN) for performance evaluation is a popular research area and a wealth of literature exists in this area. Denial-of-Service (DoS) attacks are recognized as one of the most serious threats due to the resources constrained property in WSN. The Zigbee model provided in OPNET 16 is suitable for modelling WSNs. This paper presents an evaluation of the impact of DoS attacks on the performances of Wireless Sensor Networks by using the OPNET modeller. Numerical results, discussions and comparisons are provided for various simulation scenarios. The results can be of great help for optimisation studies in WSN environments under DoS attacks as well as understanding the severity and critical nodes within the WSN. The effects of DoS attacks on the performance of WSNs are considered to critically analyse these issues

    IEEE 802.15.4 Wireless Security: Self-Assessment Frameworks

    Get PDF
    This thesis analyzes the security of networks built upon the IEEE 802.15.4 standard, specifically in regard to the ability of an attacker to manipulate such networks under real-world conditions. The author presents a set of tools, both hardware and software, that advance the state-of-the-art in reconnaissance and site surveying, intelligent packet generation, and launching of attacks. Specifically, tools provide increased hardware support for the KillerBee toolkit, a Scapy layer for forming 802.15.4 packets, reflexive jamming of packets, and other research enablers. This work aims to advance the ability of security auditors to understand the threats to IEEE 802.15.4 networks by providing auditors usable and low-cost tools to carry out vulnerability assessments

    A survey of potential security issues in existing wireless sensor network protocols

    Get PDF
    The increasing pervasiveness of wireless sensor networks (WSNs) in diverse application domains including critical infrastructure systems, sets an extremely high security bar in the design of WSN systems to exploit their full benefits, increasing trust while avoiding loss. Nevertheless, a combination of resource restrictions and the physical exposure of sensor devices inevitably cause such networks to be vulnerable to security threats, both external and internal. While several researchers have provided a set of open problems and challenges in WSN security and privacy, there is a gap in the systematic study of the security implications arising from the nature of existing communication protocols in WSNs. Therefore, we have carried out a deep-dive into the main security mechanisms and their effects on the most popular protocols and standards used in WSN deployments, i.e., IEEE 802.15.4, Berkeley media access control for low-power sensor networks, IPv6 over low-power wireless personal area networks, outing protocol for routing protocol for low-power and lossy networks (RPL), backpressure collection protocol, collection tree protocol, and constrained application protocol, where potential security threats and existing countermeasures are discussed at each layer of WSN stack. This paper culminates in a deeper analysis of network layer attacks deployed against the RPL routing protocol. We quantify the impact of individual attacks on the performance of a network using the Cooja network simulator. Finally, we discuss new research opportunities in network layer security and how to use Cooja as a benchmark for developing new defenses for WSN systems

    Security for constrained IoT devices

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2020In the recent past the Internet of Things has been the target of a great evolution, both in terms of applicability and of use. Society increasingly wants to use and massify the IoT to obtain information and act in the environment, for example, to remotely control an irrigation system. The reduction in the cost of devices and the constant evolution of personal mobile devices has largely contributed to their spread. However, its implementation is carried out in adverse environments and outside the typical information systems. The devices are, as a rule, limited in terms of resources, both computation and memory. The applicability to the IoT of the security techniques already known to conventional systems has therefore to be adapted, because it does not take into account the characteristics of the resources of the devices and require additional load when exchanging messages between these system elements. In addition, the development of applications is difficult because there is not yet developed tools and standards as there are for the traditional HTTPS or TLS when considering conventional systems. In this work, we intend to present a prototype of a low-cost solution (compared to existing equivalent solutions) that uses a secure communication channel based on standard protocols. An application is also developed based on technologies more familiar to programmers, similar to traditional Web development. We took into account the ”Green By Web” project as a case study. We have concluded that it is possible to have a secure communication, using UDP/DTLS over the CoAP protocol. With this approach we optimized the number of exchanged messages between the client and the server to be up to 8 times less and their size to be up to 10%, comparing against applications that use TCP/TLS connections, such as web applications that use HTTPS. This allows the energy spent by the low-cost components to be lower and increases their battery lifetime

    A Novel Architectural Framework on IoT Ecosystem, Security Aspects and Mechanisms: A Comprehensive Survey

    Get PDF
    For the past few years, the Internet of Things (IoT) technology continues to not only gain popularity and importance, but also witnesses the true realization of everything being smart. With the advent of the concept of smart everything, IoT has emerged as an area of great potential and incredible growth. An IoT ecosystem centers around innovation perspective which is considered as its fundamental core. Accordingly, IoT enabling technologies such as hardware and software platforms as well as standards become the core of the IoT ecosystem. However, any large-scale technological integration such as the IoT development poses the challenge to ensure secure data transmission. Perhaps, the ubiquitous and the resource-constrained nature of IoT devices and the sensitive and private data being generated by IoT systems make them highly vulnerable to physical and cyber threats. In this paper, we re-define an IoT ecosystem from the core technologies view point. We propose a modified three layer IoT architecture by dividing the perception layer into elementary blocks based on their attributed functions. Enabling technologies, attacks and security countermeasures are classified under each layer of the proposed architecture. Additionally, to give the readers a broader perspective of the research area, we discuss the role of various state-of-the-art emerging technologies in the IoT security. We present the security aspects of the most prominent standards and other recently developed technologies for IoT which might have the potential to form the yet undefined IoT architecture. Among the technologies presented in this article, we give a special interest to one recent technology in IoT domain. This technology is named IQRF that stands for Intelligent Connectivity using Radio Frequency. It is an emerging technology for wireless packet-oriented communication that operates in sub-GHz ISM band (868 MHz) and which is intended for general use where wireless connectivity is needed, either in a mesh network or point-to-point (P2P) configuration. We also highlighted the security aspects implemented in this technology and we compare it with the other already known technologies. Moreover, a detailed discussion on the possible attacks is presented. These attacks are projected on the IoT technologies presented in this article including IQRF. In addition, lightweight security solutions, implemented in these technologies, to counter these threats in the proposed IoT ecosystem architecture are also presented. Lastly, we summarize the survey by listing out some common challenges and the future research directions in this field.publishedVersio
    corecore